matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFunktionserstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Funktionserstellung
Funktionserstellung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionserstellung: Bedingungen
Status: (Frage) beantwortet Status 
Datum: 20:02 So 10.05.2009
Autor: Scorpi0n1

Aufgabe
Eine ganzrationale Funktion 3. GRades ist punktsymetrisch zum Ursprung, hat ein Maximum bei x= wurzel 3 und schließt im intervall I=[0;3] eine Fläche mit dem Inhalt 9/4 FE ein. Wie heißt die Funktion

Wie lauten die Bedingungen dafür?
punktsymmetrich heißt ja dann im meinem fall [mm] ax^3 [/mm] + cx + d (fällt das d weg wg der punktsymmetrie?

Ansonten würde ich sagen :
f '(1,73)= 0 ( da extremum bei wurzel 3)
Wie komm ich auf die restlichen Punkte? Weis damit nix anzufangen...

        
Bezug
Funktionserstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 So 10.05.2009
Autor: barsch

Hi,

Funktion 3. Grades [mm] f(x)=ax^3+bx^2+cx+d [/mm]

Als erstes: Eigenschaft der Punktsymmetrie nutzen.

> Maximum bei x= wurzel 3

> f '(1,73)= 0 ( da extremum bei wurzel 3)

Besser: [mm] f'(\red{\wurzel{3}})=0 [/mm]

Wie sieht $f'$ aus? Das kannst du doch sagen, indem du die Koeffizienten wie Konstanten behandelst, und dann $f$ nach x ableitest.

> intervall I=[0;3] eine Fläche mit dem Inhalt 9/4 FE ein

Was heißt denn das? Das bedeutet doch


[mm] \integral_{0}^{3}{f(x) dx}=F(3)-F(1)=\bruch{9}{4}, [/mm] wobei $F(x)$ die Stammfunktion von $f$ ist. Und die Stammfunktion $F $ von $f$ kannst du auch angeben.

Du hast also letztendlich, nachdem du die Eigenschaft der Punktsymmetrie ausgenutzt hast, zwei Unbekannte. Mit den restlichen beiden Bedingungen erhalst du dann zwei Gleichungen, die nur noch von den beiden Unbekannten abhängen. Dieses Gleichungssystem kannst du dann mit einem dir bekannten Lösungsverfahren lösen.

MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]