matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenFunktionsdiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Steckbriefaufgaben" - Funktionsdiskussion
Funktionsdiskussion < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsdiskussion: Extremwert
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 24.03.2009
Autor: freak900

Aufgabe
Hallo, könnt ihr mir bitte weiterhelfen? Ich finds echt schwierig.


Bestimme in der Funktion y=ax³+bx² die Konstanten so, dass die zugehörigen Kurve im Punkt (4/4) einen Extremwert hat:

gesucht ist also: a,b

y' = 3ax² + 2bx


1. Für was brauche ich die Erste Ableitung? Für den Extremwert?

a und b, 2 unbekannte also 2 Gleichungen:

y(4) = 4
y'(4) = 0  

Kann mir die zweite Gleichung jemand erklären?
Für den Extremwert setze ich die erste Ableitung gleich 0 Null oder?
Und darum "=0" und von wo her nehme ich die 4?

3. Hier nun das große Problem:

I: a*4³ + b*4²
4=64a+16b

II: 0 = 48 a + 8b
4 = -32a
-0,125 = a

Ich verstehe einfach nicht wo man einsetzen muss um diese Zahlen heraus  zu kriegen.


DANKE

        
Bezug
Funktionsdiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Di 24.03.2009
Autor: XPatrickX


> Hallo, könnt ihr mir bitte weiterhelfen? Ich finds echt
> schwierig.
>  

Hallo,

>
> Bestimme in der Funktion y=ax³+bx² die Konstanten so, dass
> die zugehörigen Kurve im Punkt (4/4) einen Extremwert hat:
>  
> gesucht ist also: a,b

Genau...

>  
> y' = 3ax² + 2bx [ok]
>  
>
> 1. Für was brauche ich die Erste Ableitung? Für den
> Extremwert?

Ja, denn an der Stelle an der ein Extremwert vorliegt ist die erste Ableitung gleich Null.

>  
> a und b, 2 unbekannte also 2 Gleichungen:
>  
> y(4) = 4

Dies bedeutet, dass der Punkt (4/4) die Funktion erfüllt.

>  y'(4) = 0  
>
> Kann mir die zweite Gleichung jemand erklären?
> Für den Extremwert setze ich die erste Ableitung gleich 0
> Null oder?
>  Und darum "=0" und von wo her nehme ich die 4?
>  

Ja, siehe oben: "an der Stelle an der ein Extremwert vorliegt ist die erste Ableitung gleich Null" Die Stelle kennen wir ja, nämlich [mm] x_0=4. [/mm] Also muss genau an der Stelle 4 die erste Ableitung =0 sein.


> 3. Hier nun das große Problem:
>  
> I: a*4³ + b*4²
> 4=64a+16b
>  
> II: 0 = 48 a + 8b
>  4 = -32a
>  -0,125 = a
>  
> Ich verstehe einfach nicht wo man einsetzen muss um diese
> Zahlen heraus  zu kriegen.
>  

Ziehe das Doppelte der zweiten Gleichung von der ersten ab. Dann hast du eine Gleichung in der nur noch a vorkommt.

>
> DANKE

Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]