matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFunktionsbeispiel finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Funktionsbeispiel finden
Funktionsbeispiel finden < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsbeispiel finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Di 20.04.2010
Autor: snoopy89

Aufgabe
Geben Sie eine Funktion f:[-2,2] [mm] \to \IR [/mm] x [mm] \IR [/mm] an, welche die Bedingung [mm] f([-2,2])={(x_1,x_2) \in \IR x \IR : x_1^2 + x_2^2 = 1} [/mm] erfüllt. Benutzen Sie hierfür auch Schulwissen.

hallo,

ich verstehe nicht so ganz, wie so eine funktion existieren soll. erstmal fiel mir auf, dass dies ja [mm] (cosx)^2+(sinx)^2=1 [/mm] sehr ähnlich sieht. jedoch müssten doch dann [mm] x_1 [/mm] und [mm] x_2 [/mm] gleich sein oder?

als nächstes dachte ich daran, die gleichung umzustellen. dann wäre [mm] x_1=\wurzel{1-x_2^2}. [/mm] hierbei dürfte [mm] x_2 [/mm] allerdings nur auf dem intervall [-1,1] existieren, da sonst die wurzel nicht definiert wäre.

da es auf diese aufgabe 5 punkte geben soll, denke ich, dass mehr hinter dieser aufgabe steckt. kann mir vielleicht jemand helfen, das beispiel zu finden? und muss ich das dann noch für das beispiel zeigen oder begründen? steht ja an sich nicht da, aber sonst gäbe es zu viele punkte für ein einziges beispiel...

vielen dank schonmal an die helfenden

        
Bezug
Funktionsbeispiel finden: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 23:38 Di 20.04.2010
Autor: ChopSuey

Hallo,

$\ I = [-2,2] $ ist ein kompaktes Intervall. Also nehme ich an, dass die allg. Funktionsvorschrift lautet

$\ f: I [mm] \to \IR \times \IR, [/mm] \ [mm] x_1 \mapsto x_1^2 [/mm] + [mm] x_2^2 [/mm] $.

Es werden solche Werte $\ [mm] x_1 \in [/mm] [-2,2]$ gesucht, für die $\ [mm] f(x_1) [/mm] = 1 $

Wenn ich nichts uebersehen habe, hängt der Wert $\ [mm] x_2 [/mm] $ im Wesentlichen davon ab, wie du $\ [mm] x_1 [/mm] $ wählst.

Mit $\ [mm] x_1 [/mm] = 0 $ erhältst du $\ f(0) = 1 [mm] \gdw x_2^2 [/mm] = 1 [mm] \gdw x_2 [/mm] = 1 $.

Viele Grüße
ChopSuey



Bezug
                
Bezug
Funktionsbeispiel finden: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 11:52 Mi 21.04.2010
Autor: angela.h.b.


> Hallo,
>  
> [mm]\ I = [-2,2][/mm] ist ein kompaktes Intervall. Also nehme ich
> an, dass die allg. Funktionsvorschrift lautet
>  
> [mm]\ f: I \to \IR \times \IR, \ x_1 \mapsto x_1^2 + x_2^2 [/mm].

Hallo,

ganz sicher ist das nicht die Funktionsvorschrift, denn wie Du ja selbst schreibst, bildet f aus dem Intervall [-2,2] in die Menge [mm] \IR\times\IR [/mm] ab.

Also gibt es Funktionen [mm] f_1, f_2:[-2,2]\to\IR [/mm] mit  [mm] f(x):=(f_1(x), f_2(x)), [/mm]

und nun soll die Bedingung [mm] f_1^2(x)+f_2^2(x)=1 [/mm] für alle x [mm] \in [/mm] [-2,2] gelten.

Sehr billig bekommt man das mit f(x):=(1,0) oder f(x):=(0,1),

eine kostbarere Funktion hat Fred unten gesagt.

Gruß v. Angela


> Es werden solche Werte [mm]\ x_1 \in [-2,2][/mm] gesucht, für die [mm]\ f(x_1) = 1[/mm]
>  
> Wenn ich nichts uebersehen habe, hängt der Wert [mm]\ x_2[/mm] im
> Wesentlichen davon ab, wie du [mm]\ x_1[/mm] wählst.
>  
> Mit [mm]\ x_1 = 0[/mm] erhältst du [mm]\ f(0) = 1 \gdw x_2^2 = 1 \gdw x_2 = 1 [/mm].
>  
> Viele Grüße
>  ChopSuey
>  
>  


Bezug
        
Bezug
Funktionsbeispiel finden: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 21.04.2010
Autor: fred97

Wie wärs mit $f(t)= [mm] (cos(\bruch{\pi}{2}t), sin(\bruch{\pi}{2}t))$, $t\in [/mm] [-2,2]$ ?

FRED

Bezug
                
Bezug
Funktionsbeispiel finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Mi 21.04.2010
Autor: snoopy89

hmm wenn man das so sieht, wirkt es immer so einfach^^ hätte man drauf kommen können...

vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]