matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFunktionenreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Funktionenreihe
Funktionenreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Do 29.10.2009
Autor: csak1162

Aufgabe
[mm] \summe_{n=0}^{\infty} (\bruch{x}{1+x})^{n} [/mm]

also ich soll diese Funktionenreihe auf Konvergenz untersuchen. (wo sie konvergiert und grenzfunktion)

stimmt konvergiert für x [mm] \ge [/mm] 0

und f(x) = [mm] \begin{cases} 0, & \mbox{für } x \mbox{= 0} \\ 1+x, & \mbox{für } x \mbox{>0} \end{cases} [/mm]

        
Bezug
Funktionenreihe: Hinweis
Status: (Antwort) fertig Status 
Datum: 15:14 Do 29.10.2009
Autor: Roadrunner

Hallo csak!


Das stimmt so nicht ganz. In Anlehnung an die geometrische Reihe, solltest Du untersuchen, für welche $x_$ gilt:
[mm] $$\left|\bruch{x}{x+1}\right| [/mm] \ < \ 1$$

Gruß vom
Roadrunner


Bezug
                
Bezug
Funktionenreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Do 29.10.2009
Autor: csak1162

sind das nicht alle x [mm] \ge [/mm] 0 ?????

oder sonst denk ich einen blödsinn!

danke lg

Bezug
                        
Bezug
Funktionenreihe: Gegenfrage
Status: (Antwort) fertig Status 
Datum: 15:34 Do 29.10.2009
Autor: Roadrunner

Hallo csak!


Wie sieht es denn z.B. mit $x \ = \ [mm] -\bruch{1}{10}$ [/mm] aus?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Funktionenreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Do 29.10.2009
Autor: csak1162

dann wohl alle >-1

Bezug
                                        
Bezug
Funktionenreihe: noch eine Gegenfrage
Status: (Antwort) fertig Status 
Datum: 15:47 Do 29.10.2009
Autor: Roadrunner

Hallo csak!


Aha. Und was ist mit $x \ = \ - [mm] \bruch{3}{4}$ [/mm] ?

Bitte berechne die o.g. Ungleichung und nicht durch Raten lösen.


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Funktionenreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Do 29.10.2009
Autor: csak1162

okay x > -1/2

dann konvergiert die Reihe


stimmt dann $ [mm] \begin{cases} 0, & \mbox{für } x \mbox{= 0} \\ 1+x, & \mbox{für } x \mbox{>-1/2} \end{cases} [/mm] $

stimmt dann $ [mm] \begin{cases} 0, & \mbox{für } x \mbox{= 0} \\ 1+x, & \mbox{ } \mbo{sonst} \end{cases} [/mm] $

Bezug
                                                        
Bezug
Funktionenreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Do 29.10.2009
Autor: fred97


> okay x > -1/2
>  
> dann konvergiert die Reihe

Ja , für x > -1/2 konvergiert  $ [mm] \summe_{n=0}^{\infty} (\bruch{x}{1+x})^{n} [/mm] $


>  
>
> stimmt dann [mm]\begin{cases} 0, & \mbox{für } x \mbox{= 0} \\ 1+x, & \mbox{für } x \mbox{>-1/2} \end{cases}[/mm]


Das stimmt

>  
> stimmt dann [mm]\begin{cases} 0, & \mbox{für } x \mbox{= 0} \\ 1+x, & \mbox{ } \mbo{sonst} \end{cases}[/mm]

Das nicht

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]