matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitFunktionen gleich auf [0,1)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Funktionen gleich auf [0,1)
Funktionen gleich auf [0,1) < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen gleich auf [0,1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Mi 26.10.2011
Autor: Igor1

Hallo,

seien f,g stetige Funktionen , die auf [0,1) gleich sind und beide im Punkt [mm] x_{0}:=1 [/mm] stetig sind.
Dann sind sie auf [0,1] gleich. (Woher weiß man das? Gibt es
einen konkreten Satz dafür?Hat das damit zu tun , dass man eine Funktion eindeutig stetig fortsetzen kann (gibt es sowas ?) )
(die beiden Funktionen können einen Definitionsbereich haben, der nicht unbedingt gleich dem Intervall [0,1]  sein soll)

Als Beispiel ( wegen dem stelle ich diese Frage):
ln(x+1) = [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n} [/mm] für x [mm] \in [/mm] [0,1). Wegen dem Abelschen Grenzwertsatz ist die Potenzreihe in 1 stetig.
ln(x+1) ist auch in 1 stetig.
In Forster steht, dass beide Funktionen auch in [mm] \x_{0}=1 [/mm] gleich sind.

Kann man diese Aussage folgendermassen zeigen:

sei g(x):=ln(x+1), h(x):=  [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n} [/mm]
zu zeigen: g(1)=h(1)

Da beide Funktionen in [mm] x_{0} [/mm] stetig sind, gilt

[mm] \limes_{x\rightarrow\1}g(x)=g(1) [/mm]
[mm] \limes_{x\rightarrow\1}h(x)=h(1) [/mm]
also es ist zu zeigen, dass
[mm] \limes_{x\rightarrow\1}g(x)=\limes_{x\1}h(x) [/mm] gilt.
Hier würde ich das so argumentieren:
Da [mm] x\not= [/mm] 1 und g(x)=h(x) für [mm] x\in [/mm] [0,1) und damit die Behauptung  ?


Gruss
Igor




        
Bezug
Funktionen gleich auf [0,1): Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mi 26.10.2011
Autor: donquijote


> Hallo,
>  
> seien f,g stetige Funktionen , die auf [0,1) gleich sind
> und beide im Punkt [mm]x_{0}:=1[/mm] stetig sind.
> Dann sind sie auf [0,1] gleich. (Woher weiß man das? Gibt
> es
>  einen konkreten Satz dafür?Hat das damit zu tun , dass
> man eine Funktion eindeutig stetig fortsetzen kann (gibt es
> sowas ?) )

siehe unten, da du aufgrund der Stetigkeit  f(1) als Grenzwert erhältst.
Das gilt jedoch nur, wenn vorausgesetzt wird, dass f in 1 definiert und stetig ist, ansonsten muss der Grenzwert nicht existieren (z.B. f(x)=1/(1-x))

>  (die beiden Funktionen können einen Definitionsbereich
> haben, der nicht unbedingt gleich dem Intervall [0,1]  sein
> soll)
>  
> Als Beispiel ( wegen dem stelle ich diese Frage):
> ln(x+1) = [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n}[/mm]
> für x [mm]\in[/mm] [0,1). Wegen dem Abelschen Grenzwertsatz ist die
> Potenzreihe in 1 stetig.
>  ln(x+1) ist auch in 1 stetig.
>  In Forster steht, dass beide Funktionen auch in [mm]\x_{0}=1[/mm]
> gleich sind.
>  
> Kann man diese Aussage folgendermassen zeigen:
>  
> sei g(x):=ln(x+1), h(x):=  
> [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n}[/mm]
>  zu zeigen: g(1)=h(1)
>  
> Da beide Funktionen in [mm]x_{0}[/mm] stetig sind, gilt
>
> [mm]\limes_{x\rightarrow\1}g(x)=g(1)[/mm]
> [mm]\limes_{x\rightarrow\1}h(x)=h(1)[/mm]
>  also es ist zu zeigen, dass
>  [mm]\limes_{x\rightarrow\1}g(x)=\limes_{x\1}h(x)[/mm] gilt.
>  Hier würde ich das so argumentieren:
>  Da [mm]x\not=[/mm] 1 und g(x)=h(x) für [mm]x\in[/mm] [0,1) und damit die
> Behauptung  ?

Die Argumentation ist vollkommen korrekt, da gibt es nix hinzuzufügen.

>  
>
> Gruss
>  Igor
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]