matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Funktionen
Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mi 01.12.2004
Autor: Deuterinomium

Ich habe diese Frage noch auf keinem anderen Forum gestellt. Eine Hallo zusammen.

Hier eine weitere Aufgabe:

Funktion von R nach R erfülle:

1) f(x+y)=f(x)+f(y)
2) f(xy)=f(x)f(y)

Zeigen sie: Entweder ist f(x)=0 für alle x, oder es gilt f(x)=x für alle x.

Ich brauche dringend einen Ansatz. Vielen Dank!

        
Bezug
Funktionen: Lösungstipp
Status: (Antwort) fertig Status 
Datum: 18:15 Mi 01.12.2004
Autor: Peter_Pein

schau Dir doch mal an, inwiefern [mm] \limes_{h \rightarrow 0}\bruch{f(x+h)-f(x)}{h} [/mm] von x abhängt und ziehe daraus Deine Schlüsse.

Hoffentlich hilft Dir der Tipp,
wünscht Peter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]