matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Funktionen
Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:44 Mi 08.01.2014
Autor: nutzername2020

Aufgabe
geg: f(x)=6/x auf dem max. Definitionsintervall.

Für welche Punkte der Funktionskurve ist die Entfernung zum Punkt (-1,1) extremal?

verstehe den ansatz hier nicht, und bedeutet extremal => am größten??




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 Mi 08.01.2014
Autor: ilfairy

Hallo!

Etwas ist extremal, wenn es ein Extremwert ist. Ein Extremwert ist ein lokales bzw. globales Maximum bzw. Minimum.

Welchen Ansatz verstehst du nicht?


lg

ilfairy

Bezug
        
Bezug
Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:00 Mi 08.01.2014
Autor: nutzername2020

wie ich bei dieser aufgabe vor gehen sollte,
abstand zwischen dem punkt und der gerade ausrechnen aber wie auf dan maximalwert kommen?


Bezug
        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 08.01.2014
Autor: fred97


> geg: f(x)=6/x auf dem max. Definitionsintervall.

Was soll denn das "max. Definitionsintervall" sein ???

f hat den maximalen Definitionsbereich $D= [mm] \IR \setminus \{0\}$. [/mm] D ist aber kein Intervall !


>  
> Für welche Punkte der Funktionskurve ist die Entfernung
> zum Punkt (-1,1) extremal?
>  verstehe den ansatz hier nicht, und bedeutet extremal =>

> am größten??

oder am kleinsten.

Nehmen wir uns einen Punkt $(x, [mm] \bruch{6}{x})$ [/mm] auf dem Graphen von f her..

Mit Pythagoras mache Dir klar, dass der Abstand dieses Punktes von (-1,1) gegeben ist durch

[mm] d(x)=\wurzel{(x+1)^2+(\bruch{6}{x}-1)^2} [/mm]

Setzen wir [mm] f(x):=d(x)^2, [/mm] so gilt für eine Zahl [mm] x_0 \ne [/mm] 0:

    d hat in [mm] x_0 [/mm] ein Maximum (Minimum) [mm] \gdw [/mm] f hat in [mm] x_0 [/mm] ein Maximum (Minimum).


FRED

>  
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Mi 08.01.2014
Autor: nutzername2020

danke für die antwort, muss sie mir aber erstmal durch den kopf gehen lassen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]