matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFunktion zweier reell. Veränd.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktion zweier reell. Veränd.
Funktion zweier reell. Veränd. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion zweier reell. Veränd.: Ableitung
Status: (Frage) beantwortet Status 
Datum: 21:16 Mi 04.07.2012
Autor: herbi_m

Aufgabe
f(x,y) = [mm] \wurzel{y/tan x} [/mm]
Man bilde [mm] \delta f/\delta [/mm] x und [mm] \delta^2 [/mm] f/ [mm] \delta x\delta [/mm] y



Hallo zusammen!
Ich habe das leider mit den Ableitung von Funktionen mit zwei Variablen noch nicht so verstanden!
Für die 1. Ableitung nach x muss ich ja das y konstant lassen, gleichzeitig habe ich eine innere und eine äußere Funktion, die ich ableiten muss.
Ich habe da jetzt mal etwas versucht, weiß aber überhaupt nicht, ob das so geht...
Als erstes habe ich die innere Funktion abgeleitet:
Da habe ich -y [mm] -y/tan^2 [/mm] (x) raus!
Die äußere Wunktion ergibt 1/2 [mm] \wurzel{y/tan x} [/mm]
Dann multipliziere ich innere und äußere ABleitung 1/2 [mm] \wurzel{y/tan x} [/mm] * -y [mm] -y/tan^2 [/mm] (x)
Bei der gemischten Ableitung weiß ich überhaupt nicht, was ich machen soll...
Kann mir jemand helfen?!
lg herbi!

        
Bezug
Funktion zweier reell. Veränd.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Mi 04.07.2012
Autor: ChopSuey

Hallo Herbi,


> f(x,y) = [mm]\wurzel{y/tan x}[/mm]
>  Man bilde [mm]\delta f/\delta[/mm] x und
> [mm]\delta^2[/mm] f/ [mm]\delta x\delta[/mm] y
>  
> Hallo zusammen!
> Ich habe das leider mit den Ableitung von Funktionen mit
> zwei Variablen noch nicht so verstanden!
>  Für die 1. Ableitung nach x muss ich ja das y konstant
> lassen, gleichzeitig habe ich eine innere und eine äußere
> Funktion, die ich ableiten muss.

Wie du richtig erkannt hast, heißt $ [mm] \frac{\partial f}{\partial x}(x,y) [/mm] $, dass du $ f $ nach $ x $ ableitest, und $ y $ wie eine Konstante behandelst. Du leitest also nach den dir aus dem $ \ [mm] \IR^1 [/mm] $ bekannten Regeln ab. Deine Kettenregel gilt also wie im Eindimensionalen.

> Ich habe da jetzt mal etwas versucht, weiß aber überhaupt
> nicht, ob das so geht...
>  Als erstes habe ich die innere Funktion abgeleitet:
>  Da habe ich -y [mm]-y/tan^2[/mm] (x) raus!
>  Die äußere Wunktion ergibt 1/2 [mm]\wurzel{y/tan x}[/mm]
> Dann multipliziere ich innere und äußere ABleitung 1/2
> [mm]\wurzel{y/tan x}[/mm] * -y [mm]-y/tan^2[/mm] (x)
>  Bei der gemischten Ableitung weiß ich überhaupt nicht,
> was ich machen soll...

$ [mm] \frac{\partial^2 f}{\partial x\partial y}(x,y) [/mm] $ bedeutet, dass du  zunächst nach $ x $ und die Ableitung anschließend nach $ y $  (partiell) ableitest.

Gib Rückmeldung, wenn was unklar ist.
Viele Grüße
ChopSuey


Bezug
                
Bezug
Funktion zweier reell. Veränd.: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 08:41 Do 05.07.2012
Autor: Marc

Hallo ChopSuey,

> [mm]\frac{\partial^2 f}{\partial x\partial y}(x,y)[/mm] bedeutet,
> dass du  zunächst nach [mm]x[/mm] und die Ableitung anschließend
> nach [mm]y[/mm]  (partiell) ableitest.

Üblicherweise ist es andersrum definiert, was meiner Meinung nach auch Sinn macht, denn:
[mm] $\frac{\partial^2}{\partial x\partial y}f(x,y)=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}f(x,y)\right)$ [/mm]

Also wurde zuerst nach y und dann nach x abgeleitet.

Viele Grüße
Marc

Bezug
                        
Bezug
Funktion zweier reell. Veränd.: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 10:47 Do 05.07.2012
Autor: ChopSuey

Hallo Marc,

du hast natürlich recht. Vielen Dank für den Hinweis!

Viele Grüße
ChopSuey

Bezug
        
Bezug
Funktion zweier reell. Veränd.: Rechenfehler?
Status: (Antwort) fertig Status 
Datum: 23:50 Mi 04.07.2012
Autor: Helbig

Hallo, herbi,

> f(x,y) = [mm]\wurzel{y/tan x}[/mm]
>  Man bilde [mm]\delta f/\delta[/mm] x und
> [mm]\delta^2[/mm] f/ [mm]\delta x\delta[/mm] y
>  
>
> Hallo zusammen!
> Ich habe das leider mit den Ableitung von Funktionen mit
> zwei Variablen noch nicht so verstanden!
>  Für die 1. Ableitung nach x muss ich ja das y konstant
> lassen, gleichzeitig habe ich eine innere und eine äußere
> Funktion, die ich ableiten muss.
> Ich habe da jetzt mal etwas versucht, weiß aber überhaupt
> nicht, ob das so geht...
>  Als erstes habe ich die innere Funktion abgeleitet:
>  Da habe ich -y [mm]-y/tan^2[/mm] (x) raus!

Und ich [mm] $\frac [/mm] {-y} [mm] {\sin^2 x}$. [/mm] Nach der Quotientenregel.

>  Die äußere Wunktion ergibt 1/2 [mm]\wurzel{y/tan x}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Da erhalte ich  $\frac 1 {2 \sqrt {y/\tan x}$. Aber vielleicht meinst Du dasselbe.

> Dann multipliziere ich innere und äußere ABleitung 1/2
> [mm]\wurzel{y/tan x}[/mm] * -y [mm]-y/tan^2[/mm] (x)
>  Bei der gemischten Ableitung weiß ich überhaupt nicht,
> was ich machen soll...

Zuerst nach $x$ ableiten, und diese partielle Ableitung, nach $y$ ableiten.

Gruß,
Wolfgang

Bezug
                
Bezug
Funktion zweier reell. Veränd.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:39 Do 05.07.2012
Autor: herbi_m

Vielen Dank! Werde das nochmal nachrechnen! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]