matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitFunktion und Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Funktion und Stetigkeit
Funktion und Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion und Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 So 16.12.2007
Autor: Schneckal36

Aufgabe
Bestimmen sie den Parameter [mm] a\in\IR [/mm] jeweils so, dass die Funktion auf [mm] \IR [/mm] stetig wird:

[mm] f_{1}(x)=\begin{cases} 3x+1, & \mbox{für } x \mbox{kleinergleich2} \\ -2x+a, & \mbox{für } x \mbox{>2} \end{cases} [/mm]

[mm] f_{2}(x)=\begin{cases} 4x+2, & \mbox{für } x \mbox{ kleinergleich1} \\ a^{2}/2*x+a+2, & \mbox{für } x \mbox{ >1} \end{cases} [/mm]

Hallo, ich hab keine Ahnung wie ich an die Aufgabe rangehen soll geschweige denn wie man sowas rechnet!
Vielleicht könnt ihr mir helfen!


Ich habe diese Frage in kein anderes Forum gestellt

        
Bezug
Funktion und Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 16.12.2007
Autor: Somebody


> Bestimmen sie den Parameter [mm]a\in\IR[/mm] jeweils so, dass die
> Funktion auf [mm]\IR[/mm] stetig wird:
>  
> [mm]f_{1}(x)=\begin{cases} 3x+1, & \mbox{für } x \mbox{kleinergleich2} \\ -2x+a, & \mbox{für } x \mbox{>2} \end{cases}[/mm]
>  
> [mm]f_{2}(x)=\begin{cases} 4x+2, & \mbox{für } x \mbox{ kleinergleich1} \\ a^{2}/2*x+a+2, & \mbox{für } x \mbox{ >1} \end{cases}[/mm]
>  
> Hallo, ich hab keine Ahnung wie ich an die Aufgabe rangehen
> soll geschweige denn wie man sowas rechnet!
>  Vielleicht könnt ihr mir helfen!
>  

Zu [mm] $f_1(x)$. [/mm] Die Funktion [mm] $x\mapsto [/mm] 3x+1$ ist ja für alle $x$ stetig. Genauso ist (für alle $a$) die Funktion [mm] $x\mapsto [/mm] -2x+a$ für alle $x$ stetig. Problematisch ist daher einzig die Stelle $x=2$, bei der in der Definition von [mm] $f_1(x)$ [/mm] vom einen (für alle $x$ stetigen) Funktionsterm zum anderen (für alle $x$ stetigen) Funktionsterm gewechselt wird. Daher ist [mm] $f_1(x)$ [/mm] genau dann stetig, wenn $a$ so gewählt wird, dass die beiden Funktionsterme an der Stellle $x=2$ denselben Wert haben.

Man könnte es auch so ausdrücken: [mm] $f_1(x)$ [/mm] ist an der einzig problematischen Stelle $x=2$ genau dann stetig, wenn gilt:

[mm]f_1(2)=\lim_{x\rightarrow 2-}f_1(x)=\lim_{x\rightarrow 2+}f_1(x)[/mm]


Dabei ist aber, wegen der erwähnten Stetigkeit des ersten bzw. zweiten Funktionsterms in der Definition von [mm] $f_1(x)$ [/mm]

[mm]\lim_{x\rightarrow 2-}f_1(x)=\lim_{x\rightarrow 2-}\left(3x+1\right)=3\cdot 2+1=7[/mm]

bzw.

[mm]\lim_{x\rightarrow 2+}f_1(x)=\lim_{x\rightarrow 2+}\left(-2x+a)=-2\cdot 2+a=a-4[/mm]


Also muss $7=a-4$, d.h. $a=11$ sein.

Zu [mm] $f_2(x)$: [/mm] Analoges Vorgehen wie bei [mm] $f_1(x)$. [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]