matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFunktion transformieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Funktion transformieren
Funktion transformieren < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion transformieren: Idee
Status: (Frage) beantwortet Status 
Datum: 15:49 So 04.02.2007
Autor: jan32

Aufgabe
Der Graph von f [f(x)=(x-1)lnx] und die Koordinatenachsen begrenzen für x [mm] \le [/mm] 1 ein Flächenstück, das sich ins Unendliche erstreckt. Zeigen Sie, dass dieses Flächenstück den endlichen Inhalt 0,75 hat.

(... ich krieg das bestimmt raus, aber:)

Wir hatten beim Thema Volumenberechnung eines Rotationsparaboloiden um die y-Achse mal "Funktionen transformieren". Bsp.: y = 1/2 [mm] x^2, [/mm] dann ist x = [mm] \wurzel{2y} [/mm] ... dann noch die Integrationsgrenzen integrieren (aus [0;4] wird da [0;8]) ... und dann konnte man das Integral der transformierten Funktion nach dy berechnen, natürlich, weil Rotation noch unter Beachtung von [mm] \pi [/mm] und [mm] (f(x))^2 [/mm] ...

Frage: Geht das auch bei der obigen Funktion, kann man die auch transformieren, wenn ja dann wie, ich kriegs nämlich nicht raus, und dann das uneigentliche Integral bilden, bzw. so überprüfen, ob der Inhalt wiklich 0,75 beträgt? ...

Ich habe diese Frage noch in keinem anderen Forum gestellt.

        
Bezug
Funktion transformieren: so geht's
Status: (Antwort) fertig Status 
Datum: 16:31 So 04.02.2007
Autor: informix

Hallo jan32,

> Der Graph von f [f(x)=(x-1)lnx] und die Koordinatenachsen
> begrenzen für x [mm]\le[/mm] 1 ein Flächenstück, das sich ins
> Unendliche erstreckt. Zeigen Sie, dass dieses Flächenstück
> den endlichen Inhalt 0,75 hat.
>  (... ich krieg das bestimmt raus, aber:)
>  
> Wir hatten beim Thema Volumenberechnung eines
> Rotationsparaboloiden um die y-Achse mal "Funktionen
> transformieren". Bsp.: y = 1/2 [mm]x^2,[/mm] dann ist x =
> [mm]\wurzel{2y}[/mm] ... dann noch die Integrationsgrenzen
> integrieren (aus [0;4] wird da [0;8]) ... und dann konnte
> man das Integral der transformierten Funktion nach dy
> berechnen, natürlich, weil Rotation noch unter Beachtung
> von [mm]\pi[/mm] und [mm](f(x))^2[/mm] ...
>  
> Frage: Geht das auch bei der obigen Funktion, kann man die
> auch transformieren, wenn ja dann wie, ich kriegs nämlich
> nicht raus, und dann das uneigentliche Integral bilden,
> bzw. so überprüfen, ob der Inhalt wiklich 0,75 beträgt?
> ...
>  

Du denkst zu kompliziert!
[Dateianhang nicht öffentlich]

integriere zunächst mit einer festen unteren Grenze k:
[mm] \integral_{k}^{1}{f(x) \ dx} [/mm]
und bilde dann den Grenzwert [mm] \limes_{k\to0} [/mm] des Integrals.

Gruß informix

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]