Funktion eines Zeitverlaufs < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:24 Sa 10.01.2009 | Autor: | Marvin90 |
Aufgabe | Um die Bekämpfung von Schadinsekten zu optimieren,beobachtet man in gleichen Zeitintervallen ( z.B. zwei Wochen ) die Dichte des Befalls,indem man die Anzahl der Insekten pro dm² großflächig anzählt und dann den Mittelwert bildet. Diese Werte trägt man dann in eine Tabelle ein:
Zeit in Wochen: 0,4 3,4 4 5
Schadinsekten pro dm²: 0 3,4 3 0
a) Bestimmen Sie aus den Tabellenwerten die Gleichung einer ganzrationalen Funktion f 3. Grades,die den zeitlichen Verlauf des Schadinsektenbefalls beschreibt. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo zusammen,ich schreibe morgen eine Matheklausur nach und habe zum Lernen die alte eines Freundes genommen.
Ich bin auch schon ein Stück weit gekommen hänge jedoch an folgender Stelle fest:
1. f(0,4)=0,064a + 0,16b + 0,4c + d = 0
2. f(3,4)=39,304a + 11,56b + 3,4c + d = 3,4
3. f(4)=64a + 16b + 4c + d = 3
4. f(5)=125a + 25b + 5c + d =0
Wie komme ich also zu a,b,c und d um die Endgleichung aufzustellen?
Vielen dank im vorraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:37 Sa 10.01.2009 | Autor: | leduart |
Hallo
Das ist ein lineares GS mit 4 Unbekannten. man löst das am besten mit dem sog. Additionsverfahren (Gauss- algorithmus)
du addierst ein Vielfaches der ersten gleichung zu allen anderen so dass einer der Unbekannten wegfällt. Hier z. Bsp das neg. der 1. Gleichung von allen anderen, dann fällt d weg. 1. Gl stehen lassen mit den verbleibenden 3 dasselbe mit der nächsten Unbekannten machen. bleiben 2 noch mal dasselbe bleibt eine bekannte, in die vorletzte Gl. einsetzen 2 Bekannte , wieder in die mit 3 Unb. einsetzen 3 Bekannte und die schliesslich in die Erste.
Eifacheres Verfahren: du kennst 2 Nullstellen x1 und x2
Also hat deine Polynom die Form :
p(x)=(x-x1)*(x-x2)*(ax+b)
da du x1 und x2 kennst (0 und 4) hast du nur noch 2 Unbekannte a und b.
setz die 2 verbleibenden Werte ein und du hast nur noch 2 Gl. mit 2 Unbekannten.
Das Verfahren ist immer gut, wenn man schon Nullstellen kennt!
Gruss leduart
|
|
|
|