matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeFunktion Abstand zum Ursprung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Funktion Abstand zum Ursprung
Funktion Abstand zum Ursprung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion Abstand zum Ursprung: Frage
Status: (Frage) beantwortet Status 
Datum: 17:13 Mi 10.11.2004
Autor: walter36

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo! Ich bitte dringend um Hilfe, da ich keine Ahnung habe wie man diese Aufgabe lösen kann:

f(x)=x+(2/x²)  ;  x > 0

a) Welcher Punkt des Graphen von f hat vom Ursprung minimalen Abstand?
b) Die Koordinatenachsen und ihre Parallelen durch den Punkt (der Punkt aus a) schließen ein Rechteck ein. Wann ist der Flächeninhalt dieses Rechtecks minimal?

        
Bezug
Funktion Abstand zum Ursprung: Hilfestellung
Status: (Antwort) fertig Status 
Datum: 17:51 Mi 10.11.2004
Autor: Fugre


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo! Ich bitte dringend um Hilfe, da ich keine Ahnung
> habe wie man diese Aufgabe lösen kann:
>  
> f(x)=x+(2/x²)  ;  x > 0
>  
> a) Welcher Punkt des Graphen von f hat vom Ursprung
> minimalen Abstand?
>  b) Die Koordinatenachsen und ihre Parallelen durch den
> Punkt (der Punkt aus a) schließen ein Rechteck ein. Wann
> ist der Flächeninhalt dieses Rechtecks minimal?
>  

Hallo Walter,

hier geht es ja um eine Extremwertaufgabe. Wie bei jeder Extremwertaufgabe suchen wir zunächst nach der Zielfunktion.

a) hier soll also der Abstand vom Ursprung minimal sein. Also überlegen wir, wie wir auf den Abstand kommen bzw was wir über den Abstand zum Ursprung wissen.
Wir wissen, dass der Betrag der x-Koordinate den horizontalen Abstand des Punktes zum Ursprung angibt und der Betrag der y-Koordinate den vertikalen Abstand zum Ursprung.
Wenn du jetzt einen beliebigen Punkt nimmst, vom Ursprung horizontal bis zu der x-Koordinate des Punktes wanderst, dort einen Punkt machst, von da aus y Schritte nach oben machst, dann solltest du bei dem Punkt angekommen sein. Wenn du nun die in diesem Vorgang gezeichneten Strecken ansiehst, wirst du sehen, dass sie senkrecht aufeinander stehen. Betrachtes du jetzt den Abstand von deinem Punkt zum Ursprung, so wäre diese Strecke die Hypothenuse des Dreiecks. Die Katheten des Dreiecks sind x und y, also besteht zwischen dem Abstand $ a $ zum Ursprung und zu den Koordinaten folgender Zusammenhang: $ [mm] a^2=x^2+y^2 [/mm] $ . Nun kannst du noch die Wurzel ziehen und da steht:
$ [mm] a=Wurzel{x^2+y^2} [/mm] $

Somit wäre unsere Zielfunktion $ [mm] a=Wurzel{x^2+y^2} [/mm] $ in die noch unsere Nebenbedingung $ [mm] f(x)=y=x+(2/x^2) [/mm] $ eingefügt werden muss.
Die Nebenbedingung impliziert ja, dass jeder Punkt ein Punkt unserer Funktion sein muss.

Gut jetzt packst du die Nebenbedingung in die Zielfunktion und überprüfst diese auf absolute Minima.

b) Der Punkt aus a) sein A und habe die Koordinaten (x/f(x)) . Die Seiten des Rechtecks sind die Koordinaten des Punktes, also ist der Flächeninhalt des Rechtecks $ A=x*f(x) $ und dies soll minimal sein. Außerdem wissen wir wieder, dass der Eckpunkt des Rechtecks ein Punkt der Funktion ist, also ist unsere Nebenbedingung wieder: $ [mm] f(x)=x+(2/x^2) [/mm] $ .
Diese baust du wieder in die Zielfunktion ein und überprüfst die Funktion dann auf absolute Maxima.

Ich hoffe, dass ich dir helfen konnte, sollte noch etwas unklar bleiben, so frage bitte nach.

Liebe Grüße
Fugre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]