matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFundamentalsystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Fundamentalsystem
Fundamentalsystem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsystem: Nullstellen ermitteln
Status: (Frage) beantwortet Status 
Datum: 23:05 Do 04.03.2010
Autor: pavelle

Hallo,
ich habe oft Probleme die Nullstellen von Polynonem 3. Grades aufwärts zu ermitteln.

Beispiel:

[mm] y^4-3y^{''}-4y=0 [/mm]

bei Polynomen 2. Grades kann ich ja die pq-Formel oder das Faktorisierung nutzen.
Hat jemand nun Tips oder Rechenwege, wie ich die Nullstellen höher wertiger Polynome leicht bestimmen kann?

lg

        
Bezug
Fundamentalsystem: Hinweise
Status: (Antwort) fertig Status 
Datum: 23:15 Do 04.03.2010
Autor: Loddar

Hallo pavelle!


In Deinem genannten Fall ergibt sich als charakteristische Gleichung:
[mm] $$\lambda^4-3*\lambda^2-4 [/mm] \ = \ 0$$
Dies ist eine sogenannte biquadratische Gleichung, welche sich mit der Substitution $z \ := \ [mm] \lambda^2$ [/mm] auf eine "normale" quadratische Gleichung zurückführen lässt.

Im Allgemeinen muss man bei höhergradigen Polynomen versuchen, eine der Nullstellen durch Probieren zu finden und anschließend eine MBPolynomdivision durchzuführen.


Gruß
Loddar


Bezug
                
Bezug
Fundamentalsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:31 Fr 05.03.2010
Autor: pavelle

Hi,
mit der Substitution [mm] \lambda^2 [/mm] erhalte ich:

[mm] \lambda^{2}-3*\lambda-4=0 [/mm]

[mm] (\lambda+1)*(\lambda-4) [/mm]

RÜcksubstitution:

[mm] (\lambda^2+1)*(\lambda^2-4) [/mm]

Richtig?

Nur wie kann ich weiter auflösen, damit Lamba in erste Potenz steht?

Grüße



Bezug
                        
Bezug
Fundamentalsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 03:19 Fr 05.03.2010
Autor: MathePower

Hallo pavelle,

> Hi,
>  mit der Substitution [mm]\lambda^2[/mm] erhalte ich:
>  
> [mm]\lambda^{2}-3*\lambda-4=0[/mm]
>
> [mm](\lambda+1)*(\lambda-4)[/mm]
>  
> RÜcksubstitution:
>  
> [mm](\lambda^2+1)*(\lambda^2-4)[/mm]
>  
> Richtig?
>  
> Nur wie kann ich weiter auflösen, damit Lamba in erste
> Potenz steht?


Nun, die Lösungen von

[mm]\lambda^{2}+1=0[/mm]

und


[mm]\lambda^{2}-4=0[/mm]


bestimmen.


Jede dieser Gleichungen hat zwei Lösungen.

Dann ist

[mm]\lambda^{2}+1=\left(\lambda-\lambda_{1}\right)*\left(\lambda-\lambda_{2}\right)[/mm]

und


[mm]\lambda^{2}-4=\left(\lambda-\lambda_{3}\right)*\left(\lambda-\lambda_{4}\right)[/mm]


>  
> Grüße
>  

>


Gruss
MathePower  

Bezug
                                
Bezug
Fundamentalsystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:32 Fr 05.03.2010
Autor: pavelle

thx!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]