matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenFundamentalsystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Fundamentalsystem
Fundamentalsystem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsystem: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:13 Do 03.08.2006
Autor: Trapt_ka

Aufgabe
x^(-2-i)   x^(-2+i)

wie kann ich ein komplexes fundamentalsystem in ein reellses umschreiben

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fundamentalsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Do 03.08.2006
Autor: ron

Hallo,
bin mir bei der Aufgabenstellung in bezug auf die Rolle von x nicht ganz sicher, aber vielleicht kannst du ja doch etwas damit anfangen.
1. eine komplexe Zahl z= a+bi = r cos [mm] (\nu)+ [/mm] r i [mm] sin(\nu) [/mm]
r = [mm] |z|=\wurzel{a^2+b^2} [/mm]
[mm] \nu [/mm] = positive Winkel mit der real-Achse = [mm] arctan(\bruch{b}{a}) [/mm]

2. Bei der reellen Darstellung des FS sind zwei Prüfkriterien wichtig:
a) alle Koeffizienten der DGL sind reell
b) alle Realteile der komplexen Nullstellen des charakteristischen Polynomes sind gleich

3. Nutze aus: [mm] sin{(-\nu)}=-sin{(\nu)} [/mm] und [mm] cos(-\nu)=cos(\nu) [/mm]

4. [mm] e^{t(a+bi)}=\begin{cases} {e^{at}cos{(bt)}, & b<0} \\ {e^{at}sin{(bt)}, & b>0 }\end{cases} [/mm]

Hier ist mein Verständnisproblem deiner Aufgabenstellung in bezug auf x in einem Fundamentalsystem. Sollte [mm] x^{-2+i} [/mm] nicht [mm] e^{-2+i} [/mm] sein?! Dann dürfte es mit den o.a. Vorgehen problemlos zu bewältigen sein für dich.
Bitte schreibe doch mal die genaue Aufgabe, danke.
Gruß
Ron


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]