matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieFubini und Tonelli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Fubini und Tonelli
Fubini und Tonelli < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fubini und Tonelli: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Do 21.06.2012
Autor: tkgraceful

Aufgabe
Verstehe die Aussage der beiden Sätze.



Diese Aufgabe habe ich mir natürlich selbst gestellt.

Bei uns sieht Tonelli wie folgt aus:
Seien [mm] (X_i,\mathcal A_i, \mu_i) [/mm] zwei [mm] \sigma [/mm] -endliche Maßräume. [mm] \mu=\mu_1\times \mu_2,[/mm]  [mm]\mathcal A =\mathcal A_1\times \mathcal A_2, f:X_1\times\X_2\to [0,\infty][/mm] sei [mm]\mathcal A[/mm] -messbar.

Dann gilt [mm] \int f\mu [/mm] = [mm] \int\int f(x,y)\mu_2(dy)\mu_1(dx) [/mm] = [mm] \int\int f(x,y)\mu_1(dx)\mu_2(dy) [/mm]


Jetzt hab ich nochmal woanders gespickt: Siehe dieses Lemma []http://yfrog.com/3w57rqp.


Damit glaube ich, sind unsere Voraussetzungen oben nicht vollständig. Dass f messbar ist, reicht ja noch nicht. Vor allem muss die Funktion [mm] f(\cdot,y) [/mm] doch [mm] \mu_1 [/mm] Integrierbar und [mm] f(x,\cdot) [/mm] muss [mm] \mu_2 [/mm] -integrierbar sein, oder?

Viele Grüße,

chris



        
Bezug
Fubini und Tonelli: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Do 21.06.2012
Autor: fred97


> Verstehe die Aussage der beiden Sätze.
>  
>
> Diese Aufgabe habe ich mir natürlich selbst gestellt.
>  
> Bei uns sieht Tonelli wie folgt aus:
>  Seien [mm](X_i,\mathcal A_i, \mu_i)[/mm] zwei [mm]\sigma[/mm] -endliche
> Maßräume. [mm]\mu=\mu_1\times \mu_2,[/mm]  [mm]\mathcal A =\mathcal A_1\times \mathcal A_2, f:X_1\times\X_2\to [0,\infty][/mm]
> sei [mm]\mathcal A[/mm] -messbar.
>  
> Dann gilt [mm]\int f\mu[/mm] = [mm]\int\int f(x,y)\mu_2(dy)\mu_1(dx)[/mm] =
> [mm]\int\int f(x,y)\mu_1(dx)\mu_2(dy)[/mm]

bei Tonelli müssen die Funktion f nur messbar sein. Dafür muss f [mm] \ge [/mm] 0 sein. Das Integral darf auch [mm] \infty [/mm] sein.

>  
>
> Jetzt hab ich nochmal woanders gespickt: Siehe dieses Lemma
> []http://yfrog.com/3w57rqp.

Das ist der Satz von Fubini, also nicht Tonelli !

>  
>
> Damit glaube ich, sind unsere Voraussetzungen oben nicht
> vollständig. Dass f messbar ist, reicht ja noch nicht. Vor
> allem muss die Funktion [mm]f(\cdot,y)[/mm] doch [mm]\mu_1[/mm] Integrierbar
> und [mm]f(x,\cdot)[/mm] muss [mm]\mu_2[/mm] -integrierbar sein, oder?

Bei Fubini, ja

FRED

>  
> Viele Grüße,
>  
> chris
>
>  


Bezug
                
Bezug
Fubini und Tonelli: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 Mo 25.06.2012
Autor: tkgraceful

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]