matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperFrobenius-Homomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Frobenius-Homomorphismus
Frobenius-Homomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frobenius-Homomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Mi 05.01.2011
Autor: Lippel

Aufgabe
Sei K Körper, char K = p > 0, K endlich.
Zeige: Der Frobenius-Homomorphismus [mm] $\sigma: [/mm] K [mm] \to [/mm] K$ ist ein Automorphismus.
Gilt dies auch ohne die Endlichkeitsbedingung an K?

Hallo,

den ersten Teil der Aufgabe konnte ich lösen, ist ja auch recht einfach. Da K Körper ist $ker [mm] \: \sigma$ [/mm] Ideal in K (also trivial) und somit {0}, da [mm] $\sigma(1)=1$. [/mm] Damit ist [mm] $\sigma$ [/mm] injektiv und (wegen K endlich) somit auch surjektiv, also ein Automorphismus.
Doch wie sieht es ohne die Endlichkeitsbedingung aus? Ich würde vermuten, dass die Aussage dann nicht mehr stimmt, aber mir fällt kein Gegenbeispiel ein. Kann mir jemand weiterhelfen?

Vielen Dank schon im Voraus und viele Grüße,
Lippel

        
Bezug
Frobenius-Homomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Mi 05.01.2011
Autor: felixf

Moin!

> Sei K Körper, char K = p > 0, K endlich.
>  Zeige: Der Frobenius-Homomorphismus [mm]\sigma: K \to K[/mm] ist
> ein Automorphismus.
>  Gilt dies auch ohne die Endlichkeitsbedingung an K?
>  
> den ersten Teil der Aufgabe konnte ich lösen, ist ja auch
> recht einfach. Da K Körper ist [mm]ker \: \sigma[/mm] Ideal in K
> (also trivial) und somit {0}, da [mm]\sigma(1)=1[/mm]. Damit ist
> [mm]\sigma[/mm] injektiv und (wegen K endlich) somit auch surjektiv,
> also ein Automorphismus.
>  Doch wie sieht es ohne die Endlichkeitsbedingung aus? Ich
> würde vermuten, dass die Aussage dann nicht mehr stimmt,
> aber mir fällt kein Gegenbeispiel ein. Kann mir jemand
> weiterhelfen?

Nun, was fuer unendliche Koerper von Charakteristik $p$ kennst du denn? Nenn doch mal ein paar Beispiele.

(Bei algebraisch abgeschlossenen Koerpern ist der Frobeniushomomorphismus uebrigens immer surjektiv, da das Polynom [mm] $X^p [/mm] - [mm] \alpha$ [/mm] fuer jedes [mm] $\alpha \in [/mm] K$ eine Nullstelle in $K$ hat. Also brauchst du unendliche Koerper, die nicht alg. abgeschlossen sind.)

LG Felix


Bezug
                
Bezug
Frobenius-Homomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Mi 05.01.2011
Autor: Lippel

Hallo,

> Nun, was fuer unendliche Koerper von Charakteristik [mm]p[/mm]
> kennst du denn? Nenn doch mal ein paar Beispiele.

Mir fallen spontan der algebraische Abschluss von [mm] $\IF_p$ [/mm] und (mit ein bisschen Recherche :P) der Körper der rationalen Funktionen [mm] $\IF_p(X)$ [/mm] (denn darin ist natürlich auch [mm] $\bar{1} [/mm] + [mm] \ldots [/mm] + [mm] \bar{1} [/mm] = [mm] \bar{0}$ [/mm] bei p Summanden) ein. Der erste der Körper ist natürlich algebraisch abgeschlossen, kommt also nach deiner Begründung unten nicht in Frage, vielleicht aber der erste...

Ich suche also ein Element aus $f(X) [mm] \in \IF_p(X)$, [/mm] sodass $f(X) [mm] \not\in [/mm] im [mm] \: \sigma$. [/mm] Ich denke [mm] $f(X)\;= [/mm] X$ könnte so ein Element sein, denn ang. [mm] $\exists [/mm] g(X) [mm] \in \IF_p(X): \sigma(g(X)) [/mm] = X [mm] \Rightarrow \left(\frac{r(X)}{t(X)}\right)^p [/mm] = X$ mit $r(X), t(X) [mm] \in \IF_p[X] \Rightarrow r(X)^p [/mm] = X [mm] t(X)^p$ [/mm]
Und das ist ein Widerspruch, aufgrund der Potenzen von X auf beiden Seiten (links Vielfache von p, rechts nicht). Damit der ist Frobeniushomomorphismus für [mm] $\IF_p(X)$ [/mm] nicht surjektiv und folglich kein Automorphismus.

>  
> (Bei algebraisch abgeschlossenen Koerpern ist der
> Frobeniushomomorphismus uebrigens immer surjektiv, da das
> Polynom [mm]X^p - \alpha[/mm] fuer jedes [mm]\alpha \in K[/mm] eine
> Nullstelle in [mm]K[/mm] hat. Also brauchst du unendliche Koerper,
> die nicht alg. abgeschlossen sind.)

Die Existenz einer Nullstelle schließt du aus der Abgeschlossenheit. Damit gibt es [mm] $\forall \: \alpha \in [/mm] K$ ein $x [mm] \in [/mm] K: [mm] x^p [/mm] - [mm] \alpha [/mm] = 0 [mm] \Rightarrow x^p [/mm] = [mm] \alpha \Rightarrow \sigma(x) [/mm] = [mm] \alpha$ [/mm] und damit ist [mm] $\sigma$ [/mm] surjektiv.
Das passt so oder?

Viele Grüße, Lippel


Bezug
                        
Bezug
Frobenius-Homomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Mi 05.01.2011
Autor: felixf

Moin!

> > Nun, was fuer unendliche Koerper von Charakteristik [mm]p[/mm]
> > kennst du denn? Nenn doch mal ein paar Beispiele.
>  
> Mir fallen spontan der algebraische Abschluss von [mm]\IF_p[/mm] und
> (mit ein bisschen Recherche :P) der Körper der rationalen
> Funktionen [mm]\IF_p(X)[/mm] (denn darin ist natürlich auch [mm]\bar{1} + \ldots + \bar{1} = \bar{0}[/mm]
> bei p Summanden) ein. Der erste der Körper ist natürlich
> algebraisch abgeschlossen, kommt also nach deiner
> Begründung unten nicht in Frage, vielleicht aber der
> erste...
>  
> Ich suche also ein Element aus [mm]f(X) \in \IF_p(X)[/mm], sodass
> [mm]f(X) \not\in im \: \sigma[/mm]. Ich denke [mm]f(X)\;= X[/mm] könnte so
> ein Element sein, denn ang. [mm]\exists g(X) \in \IF_p(X): \sigma(g(X)) = X \Rightarrow \left(\frac{r(X)}{t(X)}\right)^p = X[/mm]
> mit [mm]r(X), t(X) \in \IF_p[X] \Rightarrow r(X)^p = X t(X)^p[/mm]
>  
> Und das ist ein Widerspruch, aufgrund der Potenzen von X
> auf beiden Seiten (links Vielfache von p, rechts nicht).
> Damit der ist Frobeniushomomorphismus für [mm]\IF_p(X)[/mm] nicht
> surjektiv und folglich kein Automorphismus.

Exakt :)

> > (Bei algebraisch abgeschlossenen Koerpern ist der
> > Frobeniushomomorphismus uebrigens immer surjektiv, da das
> > Polynom [mm]X^p - \alpha[/mm] fuer jedes [mm]\alpha \in K[/mm] eine
> > Nullstelle in [mm]K[/mm] hat. Also brauchst du unendliche Koerper,
> > die nicht alg. abgeschlossen sind.)
>  
> Die Existenz einer Nullstelle schließt du aus der
> Abgeschlossenheit. Damit gibt es [mm]\forall \: \alpha \in K[/mm]
> ein [mm]x \in K: x^p - \alpha = 0 \Rightarrow x^p = \alpha \Rightarrow \sigma(x) = \alpha[/mm]
> und damit ist [mm]\sigma[/mm] surjektiv.
>  Das passt so oder?

Genau :)

Koerper, bei denen der Frobenius surjektiv ist, nennt man uebrigens perfekt. Das ist dazu aequivalent, dass jede endliche Erweiterung des Koerpers separabel ist.

Es haette also auch gereicht, eine nicht-separable endliche Erweiterung in Charakteristik $p$ zu finden ;-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]