matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFrenetische Regeln(Beweis)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Frenetische Regeln(Beweis)
Frenetische Regeln(Beweis) < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frenetische Regeln(Beweis): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 So 16.10.2011
Autor: TheBozz-mismo

Hallo!
Ich habe ein Verständnisproblem bei einem Beweis.
Es geht um die frenetischen Ableitungsregeln im [mm] \IR^3 [/mm]

Satz:
Es gibt Funktionen [mm] k,t:I-\IR, [/mm] sodass
[mm] e_{1}'=ke_{2} [/mm]
[mm] e_{2}'=-ke_{1}+te_{3} [/mm]
[mm] e_{3}'=-te_{2} [/mm]
wobei k die Krümmung ist und t die Torsion.

Für die dritte Ableitung wurde folgender Beweis gegeben:
[mm] e_{3}'=\underbrace{}_{=-=0}e_{1}+\underbrace{}_{=-=:-t}e_{2}+\underbrace{}_{=0}e_{3}=-te_{2} [/mm]

Meine erste Frage ist: Wie kommt man auf diese Form der Ableitung von [mm] e_{3} [/mm] ?  [mm] e_{3} [/mm] ist ja das Kreuzprodukt von [mm] e_{1} [/mm] und [mm] e_{2}. [/mm] Kann mir das einer erklären?

Das [mm] =0 [/mm] ist, ist mir klar, da [mm] =1 [/mm] und ableiten ergibt eben [mm] 2*=0 [/mm]

Warum folgt aus [mm] [/mm] 0?

Vielen Dank für jede Hilfe

Gruß
TheBozz-mismo

        
Bezug
Frenetische Regeln(Beweis): Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 So 16.10.2011
Autor: Al-Chwarizmi

Hallo,

die Überschrift "Frenetische Regeln" hat mir gefallen -
allerdings sollte es richtig "Frenetsche Regeln" heißen.
[]Frenet
"frenetisch" bedeutet etwa "enthusiastisch", "unbändig",
"begeistert" ...   ;-)
  

> Satz:
>  Es gibt Funktionen [mm]k,t:I-\IR,[/mm] sodass
>  [mm]e_{1}'=ke_{2}[/mm]
>  [mm]e_{2}'=-ke_{1}+te_{3}[/mm]
>  [mm]e_{3}'=-te_{2}[/mm]
>  wobei k die Krümmung ist und t die Torsion.
>  
> Für die dritte Ableitung wurde folgender Beweis gegeben:
>  
> [mm]e_{3}'=\underbrace{}_{=-=0}e_{1}+\underbrace{}_{=-=:-t}e_{2}+\underbrace{}_{=0}e_{3}=-te_{2}[/mm]
>  
> Meine erste Frage ist: Wie kommt man auf diese Form der
> Ableitung von [mm]e_{3}[/mm] ?

Zunächst wird ja einfach der Vektor  [mm] e_{3}' [/mm]  in dem ortho-
normierten, von [mm] e_{1} [/mm] , [mm] e_{2} [/mm] , [mm] e_{3} [/mm]  aufgespannten Koordinaten-
system in drei Komponenten zerlegt. Dazu braucht man die
Skalarprodukte.

> [mm]e_{3}[/mm] ist ja das Kreuzprodukt von
> [mm]e_{1}[/mm] und [mm]e_{2}.[/mm] Kann mir das einer erklären?

Das System der 3 Einheitsvektoren [mm] e_i [/mm] wird so "zurechtgezimmert",
dass [mm] e_1 [/mm] tangential in "Bewegungsrichtung" zeigt, [mm] e_2 [/mm] senkrecht
dazu in der Ebene des Schmiegekreises und [mm] e_3 [/mm] senkrecht zu
[mm] e_1 [/mm] und [mm] e_2. [/mm] Der Vektor [mm] e_3 [/mm] wird deshalb durch das Kreuzprodukt
von [mm] e_1 [/mm] und [mm] e_2 [/mm] definiert.

  

> Das [mm]=0[/mm] ist, ist mir klar, da [mm]=1[/mm]
> und ableiten ergibt eben [mm]2*=0[/mm]
>  
> Warum folgt aus [mm][/mm] 0?

Es ist ja  [mm] $e_1'=k*e_2$ [/mm] , also ist [mm] e_1' [/mm] parallel zu [mm] e_2. [/mm]
Und [mm] e_3 [/mm] steht definitionsgemäß senkrecht auf [mm] e_2 [/mm] , also
auch auf [mm] e_1'. [/mm] Daraus folgt, dass  [mm] [/mm] = 0

LG    Al-Chw.



Bezug
                
Bezug
Frenetische Regeln(Beweis): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 So 16.10.2011
Autor: TheBozz-mismo

Vielen lieben Dank für deine Erklärungen und deine Hilfe

Gruß
TheBozz-mismo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]