matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFrage zur Integralberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Frage zur Integralberechnung
Frage zur Integralberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:58 Do 28.05.2009
Autor: haruna

Aufgabe
[mm] \integral_{1}^{2}{\bruch{6*x^2}{x^3+5} dx} [/mm]

Hey
Ich brauche umbedingt Hilfe welche Integralregeln ich hier anwenden kann. Zuerst habe ich gedacht ich könnte es mit Substitution ausprobieren und habe [mm] z=x^3+5 [/mm] gesetzt. Da kam ich allerdings nicht weiter.

Ich bekam folgendes raus:
[mm] z'=3*x^2 [/mm]

[mm] \integral_{1}^{2}{(6*x^2)*(\bruch{1}{z})*(x^3+5) dz} [/mm]
Nun wusste ich nicht weiter..

Dann habe ich mir Partielle Integration angeschaut.. allerdings bezweifle ich das die hier zur Anwendungen kommen sollte.

Und mehr Regeln fallen mir nicht ein.. bzw. Partialbruchzerlegung habe ich überhaupt nicht verstanden.. wenn mir da jemand vielleicht ein einfachen Beispiel geben kann, wäre ich sehr dankbar.

Danke im voraus!
Haruna

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Frage zur Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 Fr 29.05.2009
Autor: MathePower

Hallo haruna,


[willkommenmr]


> [mm]\integral_{1}^{2}{\bruch{6*x^2}{x^3+5} dx}[/mm]
>  Hey
>  Ich brauche umbedingt Hilfe welche Integralregeln ich hier
> anwenden kann. Zuerst habe ich gedacht ich könnte es mit
> Substitution ausprobieren und habe [mm]z=x^3+5[/mm] gesetzt. Da kam
> ich allerdings nicht weiter.
>  
> Ich bekam folgendes raus:
>  [mm]z'=3*x^2[/mm]


Richtigerweise muss hier stehen:

[mm]z' \ dz = 3 x^{2} \ dx[/mm]


>  
> [mm]\integral_{1}^{2}{(6*x^2)*(\bruch{1}{z})*(x^3+5) dz}[/mm]
>  Nun
> wusste ich nicht weiter..


Die Substitution ist ganz richtig.

Natürlich mußt Du hier auch die Grenzen substituieren.

Wendest Du diese Subsitution auf den Integranden an, dann ist

[mm]\integral_{1}^{2}{\bruch{6*x^2}{x^3+5} dx}=\integral_{z_{1}}^{z_{2}}{\bruch{6*\bruch{z'}{3}}{z} \ dz}[/mm]


>  
> Dann habe ich mir Partielle Integration angeschaut..
> allerdings bezweifle ich das die hier zur Anwendungen
> kommen sollte.
>  
> Und mehr Regeln fallen mir nicht ein.. bzw.
> Partialbruchzerlegung habe ich überhaupt nicht verstanden..
> wenn mir da jemand vielleicht ein einfachen Beispiel geben
> kann, wäre ich sehr dankbar.


Siehe hier: []Partialbruchzerlegung - Beispiele


>  
> Danke im voraus!
>  Haruna
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

>


Gruß
MathePower  

Bezug
        
Bezug
Frage zur Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:21 Fr 29.05.2009
Autor: haruna

Oke das mit dem Substituieren der Integrationsgrenzen hab ich verstanden..

[mm] \integral_{7}^{13}{\bruch{6* \bruch{z'}{3}}{z} dz} [/mm]

Aber ich verstehe zwei Sachen nicht:
1. Ich dacht immer dass man z'=  [mm] \bruch{dz}{dx} [/mm] berechnet
und dann wäre doch [mm] dx=\bruch{1}{z'}*dz. [/mm]
Dazu kommt dann.. warum kein [mm] \bruch{1}{3*x^2} [/mm]  vor dem dz steht..
sowie unten...

[mm] \integral_{7}^{13}{\bruch{6* \bruch{z'}{3}}{z} \bruch{1}{3*x^2} dz} [/mm]

2. Wie müsste ich denn nun hier..

[mm] \integral_{7}^{13}{\bruch{6* \bruch{z'}{3}}{z} dz} [/mm]

.. weitermachen?? Also eigentlich müsste ich ja nun zur Stammfunktion kommen... aber dass nun z und z' vorkommen verwirrt mich.

Bezug
                
Bezug
Frage zur Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Fr 29.05.2009
Autor: Teufel

Hi und willkommen hier!

Ja, macht man auch so.

[mm] z=x^3+5 \Rightarrow \bruch{dz}{dx}=3x^2 \Rightarrow dx=\bruch{dz}{3x^2} [/mm]


Wenn du das alles in dein Ausgangsintegral einsetzt:

[mm] \integral_{}^{}{\bruch{6x^2}{z} \bruch{dz}{3x^2}}=\integral_{}^{}{\bruch{2}{z} dz}=2ln|z|=2ln|x^3+5|+C [/mm]

Da sieht man auch, wie man die Grenzen auch erstmal außen vor lassen kann: Einfach das unbestimmte Integral berechnen.

Und dann schreibe ich extra nochmal hin:

[mm] \integral_{1}^{2}{\bruch{6x^2}{x^3+5} dx}=[2ln|x^3+5|]_1^2, [/mm] da ich ja die Stammfunktion oben dann berechnet habe. Ist etwas sauberer als die Grenzen mittendrin wegzulassen.

[anon] Teufel



Bezug
        
Bezug
Frage zur Integralberechnung: Alternative "Substitution"
Status: (Antwort) fertig Status 
Datum: 07:00 Fr 29.05.2009
Autor: weightgainer

Hallo haruna,

mich macht die Substitution bei der Integration immer fertig - deswegen hab ich mir einen Weg überlegt, wie ich genau dasselbe mache, aber für mich einfacher. Vielleicht kommst du ja auch damit klar:
Ich weiß, dass die Stammfunktion von [mm]\bruch{f'(x)}{f(x)}[/mm] genau [mm]ln(f(x))[/mm] ist. Wenn ich also jetzt sehe, dass mein Integrand diese Form hat, dann integriere ich "direkt" mit einer Art "gedachten Substitution", d.h. ich sehe jetzt nur noch zu, dass oben wirklich die Ableitung von unten dem steht:
[mm] \integral_{1}^{2}{\bruch{6*x^2}{x^3+5} dx}=2*\integral_{1}^{2}{\bruch{3*x^2}{x^3+5} dx}[/mm]

(denn [mm]f(x)=x^3+5, also f'(x)=3x^2[/mm])

Daraus folgt dann sofort:
[mm]2*\integral_{1}^{2}{\bruch{3*x^2}{x^3+5} dx}=2*[ln(x^3+5]_1^2[/mm]

Kurze Bemerkung zur Substitution: ich finde das Ersetzen der Grenzen so lästig, aber das kann man natürlich vermeiden, indem man am Ende eine Rücksubstitution macht, wobei die Grenzen wieder zu den alten Grenzen werden. Das wäre dann also (bei mir) so:

Setze [mm]z := x^3+5[/mm], also ist [mm]\bruch{dz}{dx}=3x^2[/mm], und damit ist [mm]dx=\bruch{dz}{3x^2}[/mm].
Die Grenzen lasse ich einfach weg im Zwischenschritt:
[mm] \integral_{1}^{2}{\bruch{6*x^2}{x^3+5} dx} =\integral_{}^{}{\bruch{6*x^2}{z}*\bruch{dz}{3x^2}} =\integral_{}^{}{\bruch{2}{z}dz}[/mm]
[mm] =[2*ln(z)]=[2*ln(x^3+5)]_1^2 [/mm]

Mir ist bewusst, dass das mit den Grenzen unsauber ist, aber ich finde es so unnötig, weil ich diese substituierten Grenzen nur dann brauche, wenn ich das mit dem z bis zum Schluss durchziehe und mir eigentlich nur mehr Arbeit macht :-).

Gruß,
weightgainer

Bezug
                
Bezug
Frage zur Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Fr 29.05.2009
Autor: haruna

Danke euch Dreien für eure Hilfe.
Ich bin definitiv um einiges schlauer geworden =D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]