matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFouriertransformierte Exp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Fourier-Transformation" - Fouriertransformierte Exp
Fouriertransformierte Exp < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fouriertransformierte Exp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Mo 26.11.2012
Autor: BunDemOut

Aufgabe
Bestimmen Sie die Fourier-Tranformierte [mm] F(\omega) [/mm] von:

[mm] f(t)=\begin{cases} e^{-t}, & \mbox{für } t >0 \\ -e^t, & \mbox{für } t <0 \end{cases} [/mm]

Ansatz:

[mm] Ff(\omega)=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{f(t)*e^{-iwt} dt}=\bruch{1}{\wurzel{2\pi}} *(-\integral_{-\infty}^{0}{e^t*e^{-iwt} dt}+\integral_{0}^{\infty}{e^{-t}*e^{-iwt} dt}) [/mm]

Für das erste Integral habe ich:
[mm] \integral_{-\infty}^{0}{e^t*e^{-iwt} dt}=-\bruch{1}{1-i\omega}*e^{t-i \omega t}|^{0}_{-\infty}=-(\bruch{1}{1-i\omega} e^0 [/mm] - [mm] \bruch{1}{1-i\omega} \limes_{t\rightarrow-\infty} e^{t-i\omega t})=-\bruch{1}{1-i\omega} [/mm]

Das andere Integral habe ich analog behandelt und komme letztendlcih auf
[mm] Ff(\omega)=-\bruch{1}{\wurzel{2 \pi}} \bruch{2 i \omega}{\omega^2+1} [/mm]

Kann mir jemand sagen ob das so stimmt?
Ich denke nicht, dass das Einsetzen der 0 so ok ist wie ich es gemacht habe... Müsste man hier auch einen Grenzwert bilden?

Vielen Dank fürs drüberschauen und helfen

        
Bezug
Fouriertransformierte Exp: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Di 27.11.2012
Autor: MathePower

Hallo BunDemOut,

> Bestimmen Sie die Fourier-Tranformierte [mm]F(\omega)[/mm] von:
>  
> [mm]f(t)=\begin{cases} e^{-t}, & \mbox{für } t >0 \\ -e^t, & \mbox{für } t <0 \end{cases}[/mm]
>  
> Ansatz:
>  
> [mm]Ff(\omega)=\bruch{1}{\wurzel{2\pi}}\integral_{-\infty}^{\infty}{f(t)*e^{-iwt} dt}=\bruch{1}{\wurzel{2\pi}} *(-\integral_{-\infty}^{0}{e^t*e^{-iwt} dt}+\integral_{0}^{\infty}{e^{-t}*e^{-iwt} dt})[/mm]
>  
> Für das erste Integral habe ich:
>  [mm]\integral_{-\infty}^{0}{e^t*e^{-iwt} dt}=-\bruch{1}{1-i\omega}*e^{t-i \omega t}|^{0}_{-\infty}=-(\bruch{1}{1-i\omega} e^0[/mm]
> - [mm]\bruch{1}{1-i\omega} \limes_{t\rightarrow-\infty} e^{t-i\omega t})=-\bruch{1}{1-i\omega}[/mm]
>  
> Das andere Integral habe ich analog behandelt und komme
> letztendlcih auf
>  [mm]Ff(\omega)=-\bruch{1}{\wurzel{2 \pi}} \bruch{2 i \omega}{\omega^2+1}[/mm]
>  
> Kann mir jemand sagen ob das so stimmt?


Das stimmt. [ok]


>  Ich denke nicht, dass das Einsetzen der 0 so ok ist wie
> ich es gemacht habe... Müsste man hier auch einen
> Grenzwert bilden?
>


Ja, da f(t) an der Stelle t=0 unstetig ist.


> Vielen Dank fürs drüberschauen und helfen


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]