matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationFourierreihen (Herleitung)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Fourier-Transformation" - Fourierreihen (Herleitung)
Fourierreihen (Herleitung) < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihen (Herleitung): Verstehe Zwischenschritt nicht
Status: (Frage) beantwortet Status 
Datum: 13:04 So 08.02.2009
Autor: invisibleandpink

Hallo ihr! Ich versuche gerade, die Herleitung für Fourierreihen nachzuvollziehen, und ich komme bei einem Schritt nicht ganz mit... Es wäre nett, wenn ihr mir auf die Sprünge helfen könntet!

Es geht um diese Formel: (g und f sind periodische Fkt.)

[mm] =\bruch{1}{T}\integral_{0}^{T}{\overline{g(x)}f(x) dx}=\summe_{m,n}^{}\overline{g(m)}f(n)\bruch{1}{T}\integral_{0}^{T}{e^{i(n-m)\omega x}dx} [/mm] = [mm] \summe_{n\in\IZ}^{}\overline{g(n)}f(n) [/mm]

Ich verstehe nicht, wieso [mm] \bruch{1}{T}\integral_{0}^{T}{e^{i(n-m)\omega x}dx}=\delta_{nm} [/mm] sein soll! Ein Integral über [mm] e^{in\omegax} [/mm] ergibt schließlich nicht i.A. null, oder?

        
Bezug
Fourierreihen (Herleitung): Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 So 08.02.2009
Autor: leduart

Hallo
sin und cos ueber eine volle Periode integriert ergeben immer 0
da steht ja nicht [mm] e^{in} [/mm] sondern [mm] e^{i\omega*n}=e^{i*n*2\pi/T} [/mm]
Gruss leduart

Bezug
                
Bezug
Fourierreihen (Herleitung): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 So 08.02.2009
Autor: invisibleandpink

Alles klar, danke! Dachte, da wär noch irgendein Trick dabei, manchmal übersieht man das Offensichtliche ;-)

Bezug
        
Bezug
Fourierreihen (Herleitung): Kommentar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 So 08.02.2009
Autor: invisibleandpink

Ach ja, die f(n) und g(n) in der aufsummierten Formel sollen natürlich die Fourierkoeffizienten sein, ich habe lediglich das ^-Symbol das in meinen Notizen darüber steht nicht gefunden ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]