matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFormel für form. Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Formel für form. Potenzreihe
Formel für form. Potenzreihe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel für form. Potenzreihe: Verständnis eines Verfahrens
Status: (Frage) beantwortet Status 
Datum: 12:13 So 03.07.2011
Autor: extasic

Aufgabe
Sei [mm] $\sum_{n \geq 0} a_n x^n [/mm] = [mm] \frac{x-2x^3}{4x^4 - 5x^2 + 1}$ [/mm] gegeben. Zu bestimmen ist eine konkrete Formel für [mm] $a_n$. [/mm]

Dabei soll das Folgende verwendet werden:

Für eine Folge $a = [mm] (a_0 [/mm] , [mm] a_1, \ldots)$ [/mm] von komplexen
Zahlen und ein $d$-Tupel [mm] $(\alpha_1, \ldots, \alpha_d) \in \CC^d$ [/mm]
mit [mm] $\alpha_d \neq [/mm] 0$ sind äquivalent.

i) [mm] $$f_a(x) [/mm] = [mm] \displaystyle{\sum_{n \geq 0} a_n x^n} [/mm] = [mm] \frac{P(x)}{Q(x)}$$ [/mm] mit $$Q(x) = 1 + [mm] \alpha_1 [/mm] t + [mm] \cdots [/mm] + [mm] \alpha_dt^d$$ [/mm]
und einem Polynom $P(x)$ vom Grad $< d$.
ii)
[mm] $$a_{n+d} [/mm] + [mm] \alpha_1 a_{n+d-1} [/mm] + [mm] \cdots [/mm] + [mm] \alpha_d a_n [/mm] = 0 [mm] \mbox{~für~} [/mm] n [mm] \geq [/mm] 0.$$
iii) Für [mm]n \geq 0[/mm] gilt [mm] $$a_n [/mm] = [mm] \displaystyle{\sum_{i=}^k P_i(n) \gamma_i^n}$$ [/mm] mit $$1 + [mm] \alpha_1 [/mm] x + [mm] \cdots [/mm] + [mm] \alpha_dx^d [/mm] =
[mm] \displaystyle{\prod_{i=1}^k (1- \gamma_ix)^{d_i}}$$, [/mm] so dass [mm]\gamma_i \neq \gamma_j[/mm], [mm]1\leq i < j \leq k[/mm]
und [mm]P_i(t)[/mm] ein Polynom vom Grad [mm]< d_i[/mm].

Hallo!

Mir geht es darum das Verfahren zu verstehen, wie aus einer formalen Potenzreihe (wie oben gegeben) eine konkrete Formel für ein [mm]a_n[/mm] durch das Splitten in P(x) und Q(x) gewonnen werden kann. Dies ist ein Extrakt einer Aufgabe.

Wie gehe ich weiter vor? Die Definition oben habe ich in eine Polynomform für Zähler und Nenner gebracht, so dass deg(Zähler) < deg(Nenner). Sind das dann direkt P und Q, oder muss ich noch mehr tun? Wie gewinne ich nun ein konkretes Ergebnis? (Als Tipp wurde "Nullstellen" genannt, aber was genau das damit zu tun hat weiß ich nicht).

Vielen Dank im Voraus!

        
Bezug
Formel für form. Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 So 03.07.2011
Autor: MathePower

Hallo extasic,

> Sei [mm]\sum_{n \geq 0} a_n x^n = \frac{x-2x^3}{4x^4 - 5x^2 + 1}[/mm]
> gegeben. Zu bestimmen ist eine konkrete Formel für [mm]a_n[/mm].
>  
> Dabei soll das Folgende verwendet werden:
>  
> Für eine Folge [mm]a = (a_0 , a_1, \ldots)[/mm] von komplexen
>  Zahlen und ein [mm]d[/mm]-Tupel [mm](\alpha_1, \ldots, \alpha_d) \in \CC^d[/mm]
> mit [mm]\alpha_d \neq 0[/mm] sind äquivalent.
>  
> i) [mm]f_a(x) = \displaystyle{\sum_{n \geq 0} a_n x^n} = \frac{P(x)}{Q(x)}[/mm]
> mit [mm]Q(x) = 1 + \alpha_1 t + \cdots + \alpha_dt^d[/mm]
>  und einem
> Polynom [mm]P(x)[/mm] vom Grad [mm]< d[/mm].
> ii)
>  [mm]a_{n+d} + \alpha_1 a_{n+d-1} + \cdots + \alpha_d a_n = 0 \mbox{~für~} n \geq 0.[/mm]
>  
> iii) Für [mm]n \geq 0[/mm] gilt[mm][/mm][mm] a_n[/mm] = [mm]\displaystyle{\sum_{i=}^k P_i(n) \gamma_i^n}[/mm][mm][/mm]
> mit [mm][/mm]1 + [mm]\alpha_1[/mm] x + [mm]\cdots[/mm] + [mm]\alpha_dx^d[/mm] =
>  [mm]\displaystyle{\prod_{i=1}^k (1- \gamma_ix)^{d_i}}[/mm] [mm][/mm], so
> dass [mm]\gamma_i \neq \gamma_j[/mm], [mm]1\leq i < j \leq k[/mm]
>  und [mm]P_i(t)[/mm]
> ein Polynom vom Grad [mm]< d_i[/mm].
>  Hallo!
>  
> Mir geht es darum das Verfahren zu verstehen, wie aus einer
> formalen Potenzreihe (wie oben gegeben) eine konkrete
> Formel für ein [mm]a_n[/mm] durch das Splitten in P(x) und Q(x)
> gewonnen werden kann. Dies ist ein Extrakt einer Aufgabe.
>  
> Wie gehe ich weiter vor? Die Definition oben habe ich in
> eine Polynomform für Zähler und Nenner gebracht, so dass
> deg(Zähler) < deg(Nenner). Sind das dann direkt P und Q,
> oder muss ich noch mehr tun? Wie gewinne ich nun ein
> konkretes Ergebnis? (Als Tipp wurde "Nullstellen" genannt,
> aber was genau das damit zu tun hat weiß ich nicht).


Das ist so gemeint, daß

[mm]\frac{x-2x^3}{4x^4 - 5x^2 + 1}[/mm]

in Partialbrüche zerlegt werden soll.


>  
> Vielen Dank im Voraus!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]