matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFolgenräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Folgenräume
Folgenräume < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 So 05.05.2013
Autor: Frosch20

Aufgabe
Definiert wird der folgenraum [mm] \zeta^p, [/mm] mit

[mm] ||x||p:=(\summe_{k=1}^{\infty} |x_k|^p)^\bruch{1}{p} [/mm]

und 1 [mm] \le [/mm] p < q < [mm] \infty [/mm]

a) Finden Sie (mit Beweis) eine konstante c>0, so dass [mm] ||x||_q \le c||x||_p [/mm] für alle x [mm] \in \zeta^p [/mm] gilt und folgern sie  [mm] \zeta^p \subseteq \zeta^q [/mm]

b) Zeigen sie [mm] \zeta^p \not= \zeta^q [/mm]

Ich dachte mir, dass ich vll die dreiecksungleichung benutzen kann.

Also da die folgen beschränkt sind konvergieren sie folglich gengen eine zahl a

Also ich kenne nur die dreiecksungleichung und hab versucht was zu basteln, aber das kann so nicht stimmen:

Ansatzt: ich dachte mir, die folgen konvergieren paarweise gegen ein a, also

[mm] (\summe_{k=1}^{\infty} |x_k|^p)^\bruch{1}{p} [/mm]

= [mm] (\summe_{k=1}^{\infty} |x_k-a_k|^p)^\bruch{1}{p} [/mm]


[mm] \le (\summe_{k=1}^{\infty} |x_k|+|a_k|^p)^\bruch{1}{p} [/mm]

Da kann ich ja schon aufhören, weils keinen sinn macht, oder ?

        
Bezug
Folgenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Mo 06.05.2013
Autor: fred97


> Definiert wird der folgenraum [mm]\zeta^p,[/mm] mit
>  
> [mm]||x||p:=(\summe_{k=1}^{\infty} |x_k|^p)^\bruch{1}{p}[/mm]
>  
> und 1 [mm]\le[/mm] p < q < [mm]\infty[/mm]
>  
> a) Finden Sie (mit Beweis) eine konstante c>0, so dass
> [mm]||x||_q \le c||x||_p[/mm] für alle x [mm]\in \zeta^p[/mm] gilt und
> folgern sie  [mm]\zeta^p \subseteq \zeta^q[/mm]
>  
> b) Zeigen sie [mm]\zeta^p \not= \zeta^q[/mm]
>  Ich dachte mir, dass
> ich vll die dreiecksungleichung benutzen kann.
>  
> Also da die folgen beschränkt sind konvergieren sie
> folglich gengen eine zahl a

Unsinn !

>  
> Also ich kenne nur die dreiecksungleichung und hab versucht
> was zu basteln, aber das kann so nicht stimmen:
>  
> Ansatzt: ich dachte mir, die folgen konvergieren paarweise
> gegen ein a, also
>
> [mm](\summe_{k=1}^{\infty} |x_k|^p)^\bruch{1}{p}[/mm]
>  
> = [mm](\summe_{k=1}^{\infty} |x_k-a_k|^p)^\bruch{1}{p}[/mm]

Das ist doch Unfug !

>  
>
> [mm]\le (\summe_{k=1}^{\infty} |x_k|+|a_k|^p)^\bruch{1}{p}[/mm]
>  
> Da kann ich ja schon aufhören, weils keinen sinn macht,
> oder ?

So ist es. Dir scheint nicht klar zu sein, was [mm] \zeta^p [/mm] eigentlich ist.

Es ist ( mit [mm] K=\IR [/mm] oder K= [mm] \IC): [/mm]

[mm] \zeta^p=\{(x_k): x_k \in K (k=1,2,...), \summe_{k=1}^{\infty}|x_k|^p <\infty\} [/mm]

FRED


Bezug
                
Bezug
Folgenräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:41 Di 07.05.2013
Autor: Frosch20

Ich habe einen neun Ansatz.

Ich bin nun soweit, dass ich

[mm] \summe_{i=1}^{infty} \bruch{|x_i|^q}{|x_i|^p}\le [/mm] c

mit  [mm] \bruch{|x_i|^q}{|x_i|^p}\le [/mm] 1.

Nun müsste ich an der stelle weitermachen.

nun müsste [mm] \summe_{i=1}^{infty} \bruch{|x_i|^q}{|x_i|^p} [/mm] für einen folgenraum konvergieren. Ich habe nun aber keine konkrete Reihe gegeben, wie kann ich da weiter ansetzen.


Bezug
                        
Bezug
Folgenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mi 08.05.2013
Autor: ullim

Hi,

schau mal []hier

Da ist die Äquivalenz der p-Normen beschriebn. Damit solltest Du weiter kommen. Nun musst Du noch eine Folge konstuieren, die in [mm] \zeta_q [/mm] aber nicht in [mm] \zeta_q [/mm] liegt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]