matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenFolgenkompakt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Folgenkompakt
Folgenkompakt < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgenkompakt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Sa 02.02.2008
Autor: hundert

Aufgabe
Seine M,N metrische Räume und F:M->N stetig. Zeigen sie, dass  für jede folgenkompakte Menge K [mm] \subset [/mm] M die Menge [mm] L=im(F|_K) [/mm] folgenkompakt ist

folgenkompakt bedeutet ja, dass jede folge eine konvergente teilfolge besitzt. jetzt weiß ich aber nicht wie ich damit argumentieren soll und lieg ich erstmal recht in d er annahme, dass  [mm] im(F|_k) [/mm]  das im für image steht, also das bild von der funktion F eingeschränkt auf die folgenkompate teilmege k

        
Bezug
Folgenkompakt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Sa 02.02.2008
Autor: Somebody


> Seine M,N metrische Räume und F:M->N stetig. Zeigen sie,
> dass  für jede folgenkompakte Menge K [mm]\subset[/mm] M die Menge
> [mm]L=im(F|_K)[/mm] folgenkompakt ist
>  folgenkompakt bedeutet ja, dass jede folge eine
> konvergente teilfolge besitzt. jetzt weiß ich aber nicht
> wie ich damit argumentieren soll und lieg ich erstmal recht
> in d er annahme, dass  [mm]im(F|_k)[/mm]  das im für image steht,
> also das bild von der funktion F eingeschränkt auf die
> folgenkompate teilmege K

Ja, dies lese sich genau so.

Nun gehst Du einfach davon aus, dass eine beliebige Folge aus $L$ gegeben ist, also eine Folge [mm] $(f(x_n))_{n\in\IN}$ [/mm] mit [mm] $x_n\in [/mm] K$. Deine Aufgabe ist es dann, eine konvergente Teilfolge von [mm] $(f(x_n))_{n\in\IN}$ [/mm] nachzuweisen. Na, da wirst Du wohl über die Folgenkompaktheit von $K$ gehen (die [mm] $x_n$ [/mm] sind ja aus $K$) und zusätzlich die Stetigkeit von $F$ verwenden, um zu zeigen, dass das Bild des Limes der Teilfolge der [mm] $x_n$ [/mm] der Limes ihrer Bilder unter $F$ ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]