matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Mo 05.11.2012
Autor: DarkJiN

Aufgabe
Skizzieren Sie die zu den Folgen geh¨origen Mengen und stellen Sie anhand der
BilderVermutungen auf, ob die Folgen konvergent sind oder nicht.


(a) [mm] $a_{n}=(-\bruch{1}{2})^{n}$ $A=\left\{ a_{n}| n\in\IN\right\}$ [/mm]

(b) [mm] $b_{n}= \bruch{3}{\wurzel{n}}+1$ $B=\left\{b_{n}| n\in\IN\right\}$ [/mm]

(c) [mm] $c_{n}=n^2-3$ $C=\left\{c_{n}| n\in\IN\right\}$ [/mm]


Wie soll ich die Mengen skizzieren? In einem Koordinatensystem? Konvergente Folgen sind doch folgen, die sich einer bestimmten Zahl annähern, beispielsweise 0 oder? Wenn sich eine Folge beispiels weise [mm] 2^{n} [/mm] unendlich annähert, ist diese auch konvergent?

Wie ist die Aufgabe zu lösen?

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Mo 05.11.2012
Autor: fred97


> Skizzieren Sie die zu den Folgen geh¨origen Mengen und
> stellen Sie anhand der
>  BilderVermutungen auf, ob die Folgen konvergent sind oder
> nicht.
>  
>
> (a)   [mm]a_{n}= (-\bruch{1}{2})^{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

        

>  A=\{ [mm]a_{n}| n\in\IN\}[/mm]

Also  [mm] A=\{a_{n}| n\in\IN\} [/mm]


>  
> (b) [mm][mm] b_{n}= \bruch{3}{\wurzel{n}}+1 [/mm]  


>  [mm] B={b_{n}| n\in\IN} [/mm]

Also  [mm] B=\{b_{n}| n\in\IN\} [/mm]


>  
> (c) [mm]c_{n}=n²-3 Da steht c_n = n^2-3 > C={c_{n}| n\in\IN} Also C=\{c_{n}| n\in\IN\}[/mm]
>  
> Wie soll ich die Mengen skizzieren? In einem
> Koordinatensystem?

So wie Du früher in der Schule Graphen von Funktionen gezeichnet hast. Folgen sind Funktionen mit dem Definitionsbereich [mm] \IN. [/mm]



>  Konvergente Folgen sind doch folgen, die
> sich einer bestimmten Zahl annähern, beispielsweise 0
> oder?

Ja




>  Wenn sich eine Folge beispiels weise [mm]2^{n}[/mm] unendlich
> annähert,

Was meinst Du damit ?



> ist diese auch konvergent?
>  
> Wie ist die Aufgabe zu lösen?

Rechne ein paar Folgenglieder konkret aus und mache eine Skizze

Ich verrate Dir was:

[mm] (a_n) [/mm] konvergiert gegen 0, [mm] (b_n) [/mm] konvergiert gegen 1 und [mm] (c_n) [/mm] konvergiert nicht.

FRED


Bezug
                
Bezug
Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Mo 05.11.2012
Autor: DarkJiN

danke hab ich auch raus.

Bezug
        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mo 05.11.2012
Autor: Richie1401

Hallo,

> Skizzieren Sie die zu den Folgen geh¨origen Mengen und
> stellen Sie anhand der
>  BilderVermutungen auf, ob die Folgen konvergent sind oder
> nicht.
>  
>
> (a)   [mm]a_{n}= (-\bruch{1}{2})^{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

         A={ [mm]a_{n}| n\in\IN}[/mm]

>  
> (b) [mm]b_{n}= \bruch{3}{\wurzel{n}}+1 B={b_{n}| n\in\IN}[/mm]
>  
> (c) [mm]c_{n}=n²-3 C={c_{n}| n\in\IN}[/mm]
>  
> Wie soll ich die Mengen skizzieren? In einem
> Koordinatensystem? Konvergente Folgen sind doch folgen, die
> sich einer bestimmten Zahl annähern, beispielsweise 0
> oder? Wenn sich eine Folge beispiels weise [mm]2^{n}[/mm] unendlich
> annähert, ist diese auch konvergent?

Du meinst wohl [mm] 2^n\to\infty [/mm] für [mm] n\to\infty. [/mm] Diese Folge konvergiert nicht, sondern divergiert.

>  
> Wie ist die Aufgabe zu lösen?


P.S. ein Backslash vor der geschweiften Klammer sorgt dafür, dass diese auch wirklich angezeigt wird.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]