matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:27 Di 06.12.2011
Autor: yangwar1

Aufgabe
Jede nicht nach oben beschränkte Folge besitzt eine bestimmt gegen $ [mm] \infty [/mm] $divergente Teilfolge.

Ich komme bei dem Beweis nicht recht weiter. Das hier ist mein Ansatz:
Sei $ [mm] a_{n} [/mm] $ eine Folge und nicht nach oben beschränkt. Dann ist s>0 keine obere Schranke. Da die Folge nicht nach oben beschränkt ist, ist die Menge der Folgenglieder nicht nach oben beschränkt. Dann gibt es mindestens ein $ x $ aus der Menge der Folgenglieder, für das gilt: $ x>s $.

Ich wollte irgendwie auf die Definition einer bestimmt gegen $ [mm] \infty [/mm] $ divergenten Folge kommen. Die Definition besagt ja, dass es für ein beliebiges c>0 ein n aus den natürlichen Zahlen gibt, sodass ab einem [mm] $n_{0} [/mm] $ für $ [mm] n>n_{0} [/mm] $ dies gilt.

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Di 06.12.2011
Autor: Helbig

Zu jeder natürlichen Zahl $k$ gibt es ein [mm] $a_{n_k} [/mm] > k$. Die Folge [mm] $(a_{n_k})_k$ [/mm] konvergiert bestimmt gegen [mm] $\infty$, [/mm] ist aber im Allgemeinen keine Teilfolge von [mm] $(a_n)$. [/mm]

Nach dieser Idee ist jetzt eine Teilfolge zu konstruieren.

Kommst Du damit weiter?

Gruß
Wolfgang

Bezug
                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Di 06.12.2011
Autor: yangwar1

Leider nicht...
Zu zeigen ist doch: Wenn eine Folge nicht nach oben beschränkt ist, dann besitzt sie eine gegen unendlich divergente Teilfolge.

Also könnte ich doch zum Beispiel mit einem Widerspruchsbeweis es machen oder ausgehend von der Wenn bedingung mich "vorarbeiten".

Kannst du mir deinen Ansatz noch einmal genauer erläutern?

Bezug
                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Di 06.12.2011
Autor: leduart

Hallo
die antwort von helbig, sagt zu jedem k gibt es ein [mm] a_n_k [/mm] das größer k ist, eines, das >k+1 ist usw. allerdings können unter denen viele identisch sein denn etwa zwischen dem [mm] a_n>1000 [/mm] und dem [mm] a_n>2000 [/mm] braucht kein einziges [mm] a_n [/mm] liegen denn [mm] a_n=2001 [/mm] erfüllt beide Ungl und damit wäre die von Helbig konstruierte Folge, keine Teilfolge, wenn sie wie hier zw k=1000 und 2002 1000 identische [mm] a_n [/mm] enthielte.
also musst du geschickt aussuchen. denk an folgen wie n, [mm] 2^n ,1000^n, n^n [/mm] und andere bei deinem Auswahlprozess.
Aber auch Widerspruch ist möglich.
Gruss leduart

Bezug
                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Di 06.12.2011
Autor: yangwar1

Ist die Negation von: Eine folge ist bestimmt divergent gegen unendlich eigentlich: Eine Folge ist konvergent?

Bezug
                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Di 06.12.2011
Autor: abakus


> Ist die Negation von: Eine folge ist bestimmt divergent
> gegen unendlich eigentlich: Eine Folge ist konvergent?

Natürlich nicht.
Erstes Gegenbeispiel:
divergent gegen minus unendlich
zweites Gegenbeispiel:
eine beliebige Folge mit zwei Häufungspunkten
Gruß Abakus


Bezug
                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 07.12.2011
Autor: Helbig


> Kannst du mir deinen Ansatz noch einmal genauer erläutern?

Gerne. Hierzu definiere zunächst den Begriff "Teilfolge" so, daß er sich für Beweise besser eignet:

[mm] $(a_{n_k})_k$ [/mm] ist eine Teilfolge von [mm] $(a_n)_n$ [/mm] genau dann, wenn die Folge [mm] $(n_k)_k$ [/mm] streng monoton wachsend ist.

Wir müssen also dafür sorgen, daß [mm] $n_{k} [mm] $({n_k})_k$ [/mm] durch:
[mm] $n_1=1$ [/mm]

Definition von [mm] $n_{k+1}$: [/mm]

Es gibt ein $m$, so daß

(1) [mm] $a_m [/mm] > m$ und
(2) $m > [mm] n_{k}$. [/mm]

Setze nun [mm] $n_{k+1}=m$. [/mm]

Wegen (2) ist [mm] $(a_{n_k})$ [/mm] eine Teilfolge von [mm] $(a_n)$ [/mm] und wegen (1) divergiert
[mm] $(a_{n_k})$ [/mm] bestimmt gegen [mm] $\infty$. [/mm] Dies zu zeigen überlasse ich Dir.

Grüße,
Wolfgang



Bezug
                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Do 08.12.2011
Autor: yangwar1

So ganz komme ich leider immer noch nicht zurecht.

Aber ich habe noch einen anderen Ansatz gefunden, vielleicht könnt ihr den einmal überprüfen:

Sei $ [mm] a_{n} [/mm] $ eine Folge und nicht nach oben beschränkt. Dann ist s mit $ s>0 $ keine obere Schranke von $ [mm] a_{n} [/mm] $. Da die Menge nicht nach oben beschränkt ist, ist die Menge der Folgenglieder nicht nach oben beschränkt. Dann folgt:Es gibt ein x aus der Menge der Folgenglieder für das gilt: $ x>s $.

Und das ist doch genau die Definition einer bestimmt gegen unendlich divergenten Folge.

Kann natürlich nicht stimmen, da ich nicht auf die Teilfolge komme. Aber kann man diesen Ansatz wählen?

Bezug
                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Do 08.12.2011
Autor: Helbig


> So ganz komme ich leider immer noch nicht zurecht.

Was genau ist nicht klar?

>  
> Aber ich habe noch einen anderen Ansatz gefunden,
> vielleicht könnt ihr den einmal überprüfen:
>  
> Sei [mm]a_{n}[/mm] eine Folge und nicht nach oben beschränkt. Dann
> ist s mit [mm]s>0[/mm] keine obere Schranke von [mm]a_{n} [/mm]. Da die Menge
> nicht nach oben beschränkt ist, ist die Menge der
> Folgenglieder nicht nach oben beschränkt. Dann folgt:Es
> gibt ein x aus der Menge der Folgenglieder für das gilt:
> [mm]x>s [/mm].
>  
> Und das ist doch genau die Definition einer bestimmt gegen
> unendlich divergenten Folge.

Nein. Ganz und gar nicht!

>
> Kann natürlich nicht stimmen, da ich nicht auf die
> Teilfolge komme. Aber kann man diesen Ansatz wählen?

Nein. Du hast weder eine Teilfolge angegeben, noch von ihr gezeigt, daß sie bestimmt
gegen [mm] $\infty$ [/mm] konvergiert.

Gruß,
Wolfgang


Bezug
                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Do 08.12.2011
Autor: yangwar1

Zum einen steht in unserem Skript, dass:
Wenn $ [mm] (a_n) [/mm] $ eine Folge reeller Zahlen  und $ [mm] (n_k) [/mm] $ eine streng monoton wachsende Folge natürlicher Zahlen ist, dann heißt die Folge $ [mm] (a_n_k)$ [/mm] Teilfolge.

Meintest du $ [mm] (n_k)_k [/mm] $ oder $ [mm] (n_k)_{k \in \IN} [/mm] $


Bezug
                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Do 08.12.2011
Autor: Helbig


> Zum einen steht in unserem Skript, dass:
>  Wenn [mm](a_n)[/mm] eine Folge reeller Zahlen  und [mm](n_k)[/mm] eine
> streng monoton wachsende Folge natürlicher Zahlen ist,
> dann heißt die Folge [mm](a_n_k)[/mm] Teilfolge.
>  
> Meintest du [mm](n_k)_k[/mm] oder [mm](n_k)_{k \in \IN}[/mm]

Das ist bei mir dasselbe. Wenn in Ausdrücken für die Folgenglieder mehrere Variablen vorkommen, gebe ich gerne die Indexvariable an. Aber [mm] $\IN$ [/mm] anzugeben, halte ich für überflüssig.



Bezug
                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Do 08.12.2011
Autor: yangwar1


> $ [mm] (a_{n_k})_k [/mm] $ ist eine Teilfolge von $ [mm] (a_n)_n [/mm] $ genau dann, wenn die
> Folge $ [mm] (n_k)_k [/mm] $ streng monoton wachsend ist.

>
>Wir müssen also dafür sorgen, daß $ [mm] n_{k}
Bis hierhin verstehe ich es glaube ich. Wir nehmen eine Folge $ [mm] a_n [/mm] $ an. Wenn $ [mm] (n_k)$ [/mm] streng monoton wachsend ist, dann ist die Folge $ [mm] (a_{n_k})_k [/mm] $ eine Teilfolge von $ [mm] (a_n) [/mm] $.
Nach Definition von monoton wachsenden Folgen muss gelten:
$ [mm] n_k [/mm] < [mm] n_{k+1} [/mm] $

1. Frage: Wie geht es nun weiter. Könntest du mir das bitte in Worten vielleicht erklären?
2. Frage: Ich verstehe die Struktur nicht recht. Ich gehe doch im Moment von einer ganz normalen Folge aus. Die Behauptung sagt doch aber, dass ich von einer nicht nach oben beschränkten Folgen ausgehend zu einer bestimmt divergenten Teilfolge gelange.

Bezug
                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Fr 09.12.2011
Autor: Helbig


> > [mm](a_{n_k})_k[/mm] ist eine Teilfolge von [mm](a_n)_n[/mm] genau dann, wenn
> die
> > Folge [mm](n_k)_k[/mm] streng monoton wachsend ist.
>  >
>  >Wir müssen also dafür sorgen, daß [mm]n_{k}
>
> Bis hierhin verstehe ich es glaube ich. Wir nehmen eine
> Folge [mm]a_n[/mm] an. Wenn [mm](n_k)[/mm] streng monoton wachsend ist, dann
> ist die Folge [mm](a_{n_k})_k[/mm] eine Teilfolge von [mm](a_n) [/mm].
> Nach Definition von monoton wachsenden Folgen muss gelten:
>  [mm]n_k < n_{k+1}[/mm]

Genau!

>  
> 1. Frage: Wie geht es nun weiter. Könntest du mir das
> bitte in Worten vielleicht erklären?

Wir konstruieren eine Folge [mm] $(n_k)$ [/mm] mit [mm] $n_k [/mm] < [mm] n_{k+1}$ [/mm] so, daß die Folge [mm] $(a_{n_k})$ [/mm] bestimmt gegen [mm] $\infty$ [/mm] divergiert.

>  2. Frage: Ich verstehe die Struktur nicht recht. Ich gehe
> doch im Moment von einer ganz normalen Folge aus. Die
> Behauptung sagt doch aber, dass ich von einer nicht nach
> oben beschränkten Folgen ausgehend zu einer bestimmt
> divergenten Teilfolge gelange.

Genau. Deswegen haben wir ja die Folge [mm] $(n_k)$ [/mm] so definiert, daß für jedes [mm] $k\in\IN$ [/mm]
[mm] $n_k [/mm] < [mm] n_{k+1}$ [/mm] und
[mm] $a_{n_k} [/mm] > k$
gilt. Die erste Bedingung liefert, daß [mm] $(a_{n_k})$ [/mm] eine Teilfolge ist. Die zweite Bedingung ist nur erfüllbar, wenn [mm] $a_{n}$ [/mm] unbeschränkt ist. Aus der zweiten Bedingung folgt dann, daß [mm] $(a_{n_k})$ [/mm] gegen unendlich bestimmt divergiert. Kannst Du diesen Schluß begründen?

Grüße,
Wolfgang


Bezug
                                                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Fr 09.12.2011
Autor: yangwar1

Also ich habe es jetzt bis zu dem "Schluss" verstanden. Wie man auf so etwas kommt, ist mir immer noch fraglich. Ich denke irgendwie immer viel zu kurz und versuche da ganz konkret von der Bedingung etwas ableiten zu wollen.
Zu zeigen ist also noch, dass aus
$ $ [mm] a_{n_k+1} [/mm] > k+1 $ folgt, dass es die Teilfolge nun bestimmt gegen unendlich divergiert.

Bezug
                                                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Fr 09.12.2011
Autor: Helbig


> Also ich habe es jetzt bis zu dem "Schluss" verstanden. Wie
> man auf so etwas kommt, ist mir immer noch fraglich. Ich
> denke irgendwie immer viel zu kurz und versuche da ganz
> konkret von der Bedingung etwas ableiten zu wollen.
>  Zu zeigen ist also noch, dass aus
> $ $ [mm]a_{n_k+1}[/mm] > k+1 $ folgt, dass es die Teilfolge nun
> bestimmt gegen unendlich divergiert.  

Richtig! Dies bedeutet: Zu jedem [mm] $M\in\IR$ [/mm] gibt es ein [mm] $m\in\IN$, [/mm] so daß für alle $k>m$ auch [mm] $a_{n_k}>M$ [/mm] ist. Sei also [mm] $M\in\IR$. [/mm] Dann gibt es (nach dem Postulat von Archimedes) ein [mm] $m\in\IN$ [/mm] mit $m>M$ und für alle $k>m$ erhalten wir wegen der zweiten Bedingung der rekursiven Definition von [mm] $n_k$: [/mm]

[mm] $a_{n_k} [/mm] > k > m > M$.

Fertig.

Gruß,
Wolfgang



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]