matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Folgen
Folgen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:23 Mo 17.01.2011
Autor: Ayame

Aufgabe
Man beweise:
a) aus [mm] X_{n} \to [/mm] 0 (fast sicher) folgt [mm] min\{X_{n},2\} \to [/mm] 0 (fast sicher)
b) aus [mm] X_{n} \to [/mm] 0 (in Wahrscheinlichkeit) folgt [mm] min\{X_{n},2\} \to [/mm] 0 (in Wahrscheinlichkeit)

Fast sicher und in Wahrscheinlichkeit haben wir wie folgt definiert:

[mm] X_{n} \to [/mm] X  fast sicher wenn [mm] P(\{w|X_{n} \to X(w)\}=1 [/mm]

[mm] X_{n} \to [/mm] X in Wahrscheinlichkeit wenn [mm] \forall \varepsilon [/mm] > 0 [mm] P(\{|X_{n}-X|> \varepsilon \}) \to [/mm] 0

a)

Da [mm] X_{n} \to [/mm] 0 existiert ein [mm] n_{0} \in \IR [/mm] für das gilt:
[mm] \forall [/mm] n [mm] \ge n_{0} [/mm] ist [mm] min\{X_{n},2\}=X_{n} [/mm]
[mm] \Rightarrow min\{X_{n},2\} \to [/mm] 0

reicht das ?

b)

Ich weiß dass aus aus [mm] X_{n} \to [/mm] 0 (fast sicher) folgt [mm] X_{n} \to [/mm] 0 in Wahrscheinlichkeit.
Und analog: wenn [mm] min\{X_{n},2\} \to [/mm] 0 (fast sicher) gilt folgt [mm] min\{X_{n},2\} \to [/mm] 0 (in Wahrscheinlichkeit).

habe ich damit auch bewießen dass  [mm] X_{n} \to [/mm] 0 (in Wahr.) [mm] \Rightarrow min\{X_{n},2\} \to [/mm] 0 (in Wahr.) ?

LG Ayame

        
Bezug
Folgen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Mi 19.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]