Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:44 Sa 04.09.2010 | Autor: | Dante19 |
Aufgabe | [mm] \summe_{n=1}^{\infty} (\bruch{-1^{n}}{n+1}+(\bruch{2}{3})^{n}) [/mm] |
Hi
ich muss hier bei der Aufgabe das Leibniz-Kriterium anwenden, habe da aber meine Schwierigkeiten
Ich weiß das leibnitzkriterium ist da, um bei alternieren reihen zu zeigen, ob diese konvergent ist oder nicht.
dabei müssen folgende drei bedingungen erfüllt sein:
1. alternierend
2. nullfolge
3. monotonie
Also wie muss ich da vorgehen um das Leibniz-Kriterium anzuwenden ??
Danke im Vorraus
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:08 Sa 04.09.2010 | Autor: | Marcel |
Hallo,
> [mm]\summe_{n=1}^{\infty} (\bruch{-1^{n}}{n+1}+(\bruch{2}{3})^{n})[/mm]
>
> Hi
>
> ich muss hier bei der Aufgabe das Leibniz-Kriterium
> anwenden, habe da aber meine Schwierigkeiten
>
> Ich weiß das leibnitzkriterium ist da, um bei alternieren
> reihen zu zeigen, ob diese konvergent ist oder nicht.
> dabei müssen folgende drei bedingungen erfüllt sein:
>
> 1. alternierend
> 2. nullfolge
> 3. monotonie
>
>
>
> Also wie muss ich da vorgehen um das Leibniz-Kriterium
> anzuwenden ??
schau' ein wenig genauer hin:
Bei Dir steht da eine Reihe der Form
[mm] $$\sum c_n$$
[/mm]
mit
[mm] $$c_n=a_n+b_n\,.$$
[/mm]
Nun gilt der Satz
[mm] $$(\*)\;\;\;\sum a_n \text{ und }\sum b_n \text{ konvergent }\Rightarrow \sum c_n\equiv \sum {(a_n+b_n)}=\sum a_n+\sum b_n \text{ konvergent und die letzte Gleichheit gilt auch bzgl. der Reihenwerte}\,.$$
[/mm]
Bei Dir ist nun [mm] $a_n=\frac{(-1)^n}{n+1}$ [/mm] und [mm] $b_n=\left(\frac{2}{3}\right)^n\,,$ [/mm] daraus kann man sofort die Konvergenz von [mm] $\sum b_n$ [/mm] ablesen (Wurzelkriterium). Wenn Du nun zeigst, dass [mm] $\sum a_n$ [/mm] konvergiert, kannst Du [mm] $(\*)$ [/mm] oben benutzen (dann die Gleichungen "von rechts nach links" lesen).
Die Reihe [mm] $\sum a_n$ [/mm] ist eine alternierende (es ist [mm] $a_n=(-1)^n\tilde{a}_n$ [/mm] mit [mm] $\tilde{a}_n=\frac{1}{n+1}$). [/mm] Die Konvergenz von [mm] $\sum a_n$ [/mm] nach Leibnitz zu zeigen, heißt also nun nichts anderes mehr, als zu zeigen, dass die Folge
[mm] $$(\tilde{a}_n)_n\equiv\left(\frac{1}{n+1}\right)_n$$
[/mm]
Deine Bedingungen 2.) und 3.) erfüllt.
(Beachte: Deine Bedingungen 2.) und 3.) beziehen sich nicht mehr auf [mm] $(a_n)_n\,,$ [/mm] sondern auf [mm] $(\tilde{a}_n)_n\,.$)
[/mm]
Und das sollte schnell nachzuweisen sein (eigentlich kann man - da das eine "so typische, bekannte Nullfolge" ist - da schon fast sagen, dass das "bekanntermaßen" richtig ist; aber es ist auch sehr schnell nochmal formal nachweisbar).
Beste Grüße,
Marcel
|
|
|
|