matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolge Riemann int'barer Funkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Folge Riemann int'barer Funkt.
Folge Riemann int'barer Funkt. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge Riemann int'barer Funkt.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:37 Do 25.05.2006
Autor: jippie

Aufgabe
Es sei fn eine Folge Riemann-integrierbarer Funktionen auf [a,b], die gleichmaessig gegen [mm] f:[a,b]\to \IR. [/mm] Zeige, dass dann auch f Riemann-integrierbar ist und
[mm] \integral_{a}^{b}{f(x) dx}= \limes_{n\rightarrow\infty} \integral_{a}^{b}{fn(x) dx} [/mm]

Koennt ihr mir bei der Aufgabe helfen oder einen Tipp geben ich hab ueberhaupt keine Ahnung wie da rangehen soll!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Folge Riemann int'barer Funkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Do 25.05.2006
Autor: Riley

HI!!
Wir haben diesen Satz mal  bewiesen. hoffe es hilft dir.

edit: jetzt weiß ich wie man eine datei anhängt :)
here it is:  [a]Beweis

viele grüße
Riley :-)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Folge Riemann int'barer Funkt.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Sa 27.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]