matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenintegration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Flächenintegration
Flächenintegration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenintegration: zwischen f(x) und tw
Status: (Frage) beantwortet Status 
Datum: 17:05 Fr 11.09.2009
Autor: itil

Hallo,

wie kann ich die Fläche zwischen der Funktion f(x) und der Wendetangente tw bzw. einer Gerade x = 2 o.ä. berechnen?

Beispiel:

f(x) = [mm] -0,1x^3 [/mm] + 0,3x -1,8
tw: y=3x-3
x= 2


mein lösungsweg wäre:

1) Schnittstellen bestimmen:

f(x) = y
[mm] -0,1x^3 [/mm] + 0,3x -1,8 = 3x-3
a(x) = 3x-3 [mm] -(-0,1x^3 [/mm] + 0,3x -1,8)
a(x) = 3x-3 [mm] +0,1x^3 [/mm] - 0,3x + 1,8
a(x) = [mm] 0,1x^3 [/mm] +2,8x -1,2


[mm] 0,1x^3 [/mm] +2,8x -1,2 = 0
x1 = 0,43
x2 = nonreal
x3  = nonreal
(schlechtes beispiel.. sorry)

Stammfunktion: [mm] \integral [/mm] a(x) dx = [mm] \integral 0,1x^3 [/mm] +2,8x -1,2 *dx

= [mm] \bruch{0,1x^4}{4} [/mm] + [mm] \bruch{2,8x^2}{2} [/mm] -1,2x

aber was setze ich jetzt ein??.. zwischen f(x) und der tw??
bzw. bei x = 2 ??

danke schon mal!1





        
Bezug
Flächenintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Fr 11.09.2009
Autor: abakus


> Hallo,
>  
> wie kann ich die Fläche zwischen der Funktion f(x) und der
> Wendetangente tw bzw. einer Gerade x = 2 o.ä. berechnen?
>  
> Beispiel:
>  
> f(x) = [mm]-0,1x^3[/mm] + 0,3x -1,8
>  tw: y=3x-3
>  x= 2
>  
>
> mein lösungsweg wäre:
>  
> 1) Schnittstellen bestimmen:
>  
> f(x) = y
>  [mm]-0,1x^3[/mm] + 0,3x -1,8 = 3x-3
>  a(x) = 3x-3 [mm]-(-0,1x^3[/mm] + 0,3x -1,8)
>  a(x) = 3x-3 [mm]+0,1x^3[/mm] - 0,3x + 1,8
>  a(x) = [mm]0,1x^3[/mm] +2,8x -1,2
>  
>
> [mm]0,1x^3[/mm] +2,8x -1,2 = 0
>  x1 = 0,43
>  x2 = nonreal
>  x3  = nonreal
>  (schlechtes beispiel.. sorry)

Stimmt. Die "Wendetangente" ist nur ausgedacht, in Wirklichkeit liegt sie woanders.

>  
> Stammfunktion: [mm]\integral[/mm] a(x) dx = [mm]\integral 0,1x^3[/mm] +2,8x
> -1,2 *dx
>  
> = [mm]\bruch{0,1x^4}{4}[/mm] + [mm]\bruch{2,8x^2}{2}[/mm] -1,2x
>  
> aber was setze ich jetzt ein??.. zwischen f(x) und der
> tw??
>  bzw. bei x = 2 ??

Das Flächenstück wird oben und unten vom Graphen bzw. von der Tangente begrenzt.
Zur Berechnung des Inhalts dazwischen brauchst du schon mal die Differenz beider Funktionen.

Links oder rechts erfolgt die Begrenzung: auf einer Seite durch deine senkrechte Linie x=2 (das ist eine Integrationsgrenze). Die andere Integrationsgrenze ist die Stelle, wo die Funktion mit ihrer Wendetangene zusammentrifft, in diesem Fall also die x-Koordinate des Wendepunkts.
Gruß Abakus

>  
> danke schon mal!1
>  
>
>
>  


Bezug
                
Bezug
Flächenintegration: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:33 Fr 11.09.2009
Autor: itil

aber brauche ich nicht 3 x'e ? um eine fläche berechnen zu könne

bsp:

von 0 nach 1
von 1 nach 2

0,1,2

jetzt ists:

0, x, wt  ??

Bezug
                        
Bezug
Flächenintegration: besseres Beispiel
Status: (Antwort) fertig Status 
Datum: 17:35 Fr 11.09.2009
Autor: Loddar

Hallo itil!


Um eine Fläche zwischen zwei Funktionsgraphen ermitteln zu können, benötigt man zwei x-Werte (= die Integrationsgrenzen), i.d.R. sind das die Schnittstellen beide Krufen.


Für eine weitere (und konkretere) Beantwortung solltest Du ein "vernünftiges" Beispiel liefern.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]