matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesFlächeninhalte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges" - Flächeninhalte
Flächeninhalte < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalte: Krupp-Logo
Status: (Frage) beantwortet Status 
Datum: 14:25 Mo 09.01.2023
Autor: Al-Chwarizmi

Drei identische Kreise (Radius r) werden so wie im Krupp-Logo angeordnet:

          [Dateianhang nicht öffentlich]

Dabei sollen die inneren vier Segmente je den Flächeninhalt 1 besitzen,
die äußeren drei je den Flächeninhalt A.

Man berechne den Kreisradius r sowie den Flächeninhalt A .

Viel Vergnügen !       Al-Chw.


Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Flächeninhalte: uff ... gelöst !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Do 12.01.2023
Autor: Al-Chwarizmi

Liebe Geometriefans !

Als ich die Aufgabe formulierte, war mir noch nicht so recht bewusst,
wie verzwickt sie doch ist, obwohl sie doch recht schlicht daherkommt.
Nach vielen Versuchen ist es mir nun doch gelungen, geeignete
Variablen und dafür gültige Gleichungen aufzustellen, um schließlich
doch zur Lösung zu kommen.
Die numerische Lösung, die mir am Ende Wolfram Alpha lieferte,
sowohl als auch ihre Realisation mittels Geogebra überzeugt mich jetzt
doch, dass ich wohl richtig liege.

Die Gleichung, die ich Wolfram zu lösen auftrug, lautete:

      $ [mm] \sqrt{3} \cdot [/mm] (sin [mm] x)^2\ [/mm] + 3 [mm] \cdot [/mm] (x - sin x\ cos x) = x + [mm] \frac{\pi}{6} [/mm] - sin [mm] \left(x+\frac{\pi}{6}\right)\cdot [/mm] cos [mm] \left(x+\frac{\pi}{6}\right)$ [/mm]

Die Variable $x $ darin steht für einen der Winkel, welche ich zur
Beschreibung der Figur benützte.
Das Ergebnis für den Kreisradius ist  $ r [mm] \approx [/mm] 1.3925$
Der Flächeninhalt A müsste dann sein, falls r richtig berechnet war:

       $ A\ =\ [mm] \pi \cdot r^2\ [/mm] -\ 3\ [mm] \approx\ [/mm] \ 3.0917$

LG ,   Al-Chwarizmi

Bezug
        
Bezug
Flächeninhalte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:49 Fr 13.01.2023
Autor: Gonozal_IX

Hallo Al,

> Dabei sollen die inneren vier Segmente je den
> Flächeninhalt 1 besitzen,

kannst du kurz begründen, warum die vier Segmente gleich groß sein sollten?
Bei dreien der Vier sehe ich das sofort, aber bei dem Segment in der Mitte ist mir das nicht ad-hoc klar, wieso dieses die selbe Größe haben sollte, wie die drei äußeren der inneren Segmente.

Gruß,
Gono

Bezug
                
Bezug
Flächeninhalte: Figur und Bezeichnungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Fr 13.01.2023
Autor: Al-Chwarizmi


> kannst du kurz begründen, warum die vier Segmente gleich
> groß sein sollten?


Hallo Gono !

Dass die vier Segmente gleich groß sein sollen, ist die eigentliche
Idee hinter der Aufgabe. Beim "wirklichen" (wahrscheinlich gesetz-
lich geschützten) Krupp-Logo ist diese Forderung wohl nicht erfüllt.
Meine Idee war nun einfach: Wie müssen wir die drei Kreise
zusammenschieben oder auseinander rücken, damit die inneren
vier Flächenstücke gleich groß werden ?
Zu den Größen, die ich für den Lösungsweg verwendet habe, gehören:

(1.)  der Kreisradius r (für die drei Kreise mit Zentren K,L,M)
(2.)  die Seitenlänge a des gleichseitigen Dreiecks KLM
(3.)  die Seitenlänge q des gleichseitigen Dreiecks ABC, wobei A,B,C
      die Ecken des zentralen Segments sind (welches an den Dreh-Kolben
      eines Wankel-Motors erinnert)
(4.)  dazu einige geeignet ausgewählte Winkel

Ich füge eine Figur bei, in welcher ich absichtlich das zentrale Segment
deutlich kleiner als gewünscht dargestellt habe. Dies erleichtert es, sich
bei den vielen zu betrachtenden Dreiecken, Sektoren etc. zurechtzufinden.

       [Dateianhang nicht öffentlich]

LG ,     Al

Nebenbei:  []betr. Krupp-Logo



Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Flächeninhalte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 So 15.01.2023
Autor: Gonozal_IX

Hallo Al,

danke für die Erklärung soweit.

> Dass die vier Segmente gleich groß sein sollen, ist die
> eigentliche  Idee hinter der Aufgabe. Beim "wirklichen" (wahrscheinlich
> gesetzlich geschützten) Krupp-Logo ist diese Forderung wohl
> nicht erfüllt.

ja, dass das gegeben ist, hatte ich schon so verstanden.
Meine Frage ging eher in die Richtung: Ist es denn sichergestellt, dass es eine solche Figur überhaupt gibt?

Aber ich glaube, ich habe mir die Frage gerade beim Erklären meines Problems selbst beantworten können.

Durch das Verschieben der Kreise mit Fläche A werden sich die inneren Segmentflächen voraussichtlich stetig ändern und man kann dann eine (eindeutige) Position finden, dass die Flächen gleich groß werden (und zwar erstmal im Allgemeinen eine Fläche ungleich 1 haben).

Aber: Ebenso werden die Segmentflächen vermutlich stetig von A abhängen. Nun kann man ein A finden (das gesuchte A), so dass die vier gleich großen Segmentflächen von oben gerade eine Fläche von 1 haben.

Danke soweit,
Gono

Bezug
                                
Bezug
Flächeninhalte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 So 15.01.2023
Autor: Al-Chwarizmi

Hallo Gono

Exakt derartige Stetigkeitsüberlegungen habe ich mir (fast
eher schon unbewusst) bei der Formulierung der Aufgabe
natürlich gemacht.
Als Ansatz zur Lösung habe ich dann (mittels der angegebenen
Variablen r, a, q, [mm] $\varphi$, $\varepsilon$) [/mm] ein System von Gleichungen aufgestellt.
Als Hauptaufgabe blieb dann noch, daraus eine einzige Gleichung
zu kondensieren, diese numerisch lösen zu lassen und aus den
prinzipiell möglichen Lösungen eine brauchbare auszuwählen.

LG ,   Al


Bezug
        
Bezug
Flächeninhalte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:19 Sa 28.01.2023
Autor: HJKweseleit


> Drei identische Kreise (Radius r) werden so wie im
> Krupp-Logo angeordnet:
>  
> [Dateianhang nicht öffentlich]
>  
> Dabei sollen die inneren vier Segmente je den
> Flächeninhalt 1 besitzen,
>  die äußeren drei je den Flächeninhalt A.
>  
> Man berechne den Kreisradius r sowie den Flächeninhalt A
> .
>  
> Viel Vergnügen !       Al-Chw.
>  


Hierzu folgende Überlegungen:

[Dateianhang nicht öffentlich]

[mm] \gamma [/mm] = 60° - [mm] \alpha [/mm]
[mm] \beta [/mm] = 30° - [mm] \gamma [/mm] = [mm] \alpha [/mm] - 30°

Jetzt im Bogenmaß: [mm] \alpha [/mm] = [mm] \beta [/mm] + [mm] \pi/6 [/mm]

Grüne Fläche: 0,5 [mm] r^2(\alpha [/mm] - [mm] sin(\alpha)cos(\alpha)) [/mm]
Schnittpunkt zweier Kreise = 4 grüne Flächen = 2 [mm] r^2(\alpha [/mm] - [mm] sin(\alpha)cos(\alpha)),nach [/mm] Aufgabenstellung =2

2 [mm] r^2(\alpha [/mm] - [mm] sin(\alpha)cos(\alpha)) [/mm] = 2    (***)

Blaue Fläche: 0,5 [mm] r^2(\beta [/mm] - [mm] sin(\beta)cos(\beta)) [/mm]
Dreieck in der Mitte: s = r [mm] sin(\beta) [/mm]
Höhe des Dreiecks: [mm] r\wurzel{3}sin(\beta) [/mm]
Fläche des Dreiecks: [mm] r^2\wurzel{3}sin^2(\beta) [/mm]

Fläche des Zentrums: Dreiecksfläche + 6 blaue Flächen = [mm] r^2\wurzel{3}sin^2(\beta) [/mm] + [mm] 3r^2(\beta [/mm] - [mm] sin(\beta)cos(\beta)), [/mm] nach Aufgabenstellung = 1 = halbe Fläche (***)

Somit [mm] r^2\wurzel{3}sin^2(\beta) [/mm] + [mm] 3r^2(\beta [/mm] - [mm] sin(\beta)cos(\beta)) [/mm] = [mm] r^2(\alpha [/mm] - [mm] sin(\alpha)cos(\alpha)) |:r^2 [/mm]

[mm] \wurzel{3}sin^2(\beta) [/mm] + [mm] 3(\beta [/mm] - [mm] sin(\beta)cos(\beta)) [/mm] = [mm] (\alpha [/mm] - [mm] sin(\alpha)cos(\alpha)) [/mm]  

[mm] \wurzel{3}sin^2(\beta) [/mm] + [mm] 3(\beta [/mm] - [mm] sin(\beta)cos(\beta)) [/mm] = [mm] (\beta [/mm] + [mm] \pi/6 [/mm] - [mm] sin(\beta [/mm] + [mm] \pi/6)cos(\beta [/mm] + [mm] \pi/6)) [/mm]  

Das entspricht der angegebenen Lösungsgleichung.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Flächeninhalte: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:52 So 29.01.2023
Autor: Al-Chwarizmi

Hallo HJK

Besten Dank für deine Antwort und die Bestätigung, dass meine Lösung korrekt war.

Al

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]