matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFlächeninhalt gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Flächeninhalt gesucht
Flächeninhalt gesucht < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Mo 22.06.2009
Autor: Dinker

Aufgabe
Durch den Punkt A ist eine Gerade g derart zu legen, dass sie mit den positiven Koordinatenachsen ein Dreieck der Fläche F = 36 bildet. Bestimmen Sie die Gleichung der Gerade g

Guten Tag


y = mx + 9 -2m

Mal ein komplizierter Weg:

Nullpunkt 0 = mx + 9 - 2m
x = [mm] \bruch{-9 + 2m}{m} [/mm]

Stammfunktion lautet = [mm] \bruch{1}{2} mx^{2} [/mm] + 9x -2mx

36 = 0.5m ( [mm] \bruch{1}{2} mx^{2} [/mm] + 9x [mm] -2mx)^{2} [/mm] + 9( [mm] \bruch{1}{2} mx^{2} [/mm] + 9x -2mx) -2m*( [mm] \bruch{1}{2} mx^{2} [/mm] + 9x -2mx)

Wieso geht das nicht so?

Danke
gruss Dinker

        
Bezug
Flächeninhalt gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 22.06.2009
Autor: weightgainer

Sei [mm] A=(a_1/a_2) [/mm] der gegebene Punkt und die Gerade g gegeben durch y=mx+b, dann erhältst du:
[mm]a_2 = m*a_1 + b[/mm]
Aufgelöst nach m oder wahlweise auch nach b erhälst du die erste Bedingung:
[mm]m=\bruch{a_2-b}{a_1}[/mm]

bzw.

[mm]b = a_2 - m*a_1[/mm]

Die Fläche kannst du tatsächlich als Integral berechnen. Die Integrationsgrenzen sind 0 und die Nullstelle der Geraden, d.h. [mm]x=-\bruch{b}{m}[/mm].
Also muss noch gelten:

[mm]36 = \integral_{0}^{-\bruch{b}{m}}{(mx+a_2 - m*a_1) dx}[/mm]

[mm]\gdw 36= \left[ \bruch{m}{2}x^2+a_2*x-m*a_1*x\right]_0^{-\bruch{b}{m}}[/mm]

[mm]\gdw 36 = \bruch{m}{2}*(-\bruch{b}{m})^2+a_2*(-\bruch{b}{m})-m*a_1*(-\bruch{b}{m})[/mm]

[mm]\gdw 36 = \bruch{m}{2}*(-\bruch{a_2 - m*a_1}{m})^2+a_2*(-\bruch{a_2 - m*a_1}{m})-m*a_1*(-\bruch{a_2 - m*a_1}{m})[/mm]

Damit hast du jetzt eine Gleichung, in der nur noch m unbekannt ist, was du nun leicht ausrechnen kannst. Und wenn du das hast, setzt du es noch in [mm]b=a_2 - m*a_1[/mm] ein, um die vollständige Geradengleichung zu erhalten.


Bezug
        
Bezug
Flächeninhalt gesucht: ohne Integration
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 22.06.2009
Autor: Loddar

Hallo Dinker!


Es geht hier auch ohne Integration, indem Du die Flächenformel für ein rechtwinkliges Dreieck verwendest.

(Im übrigen wäre es vorteilhaft, wenn Du uns auch die gegebenen Koordinaten des Punktes $A_$ mitteilen würdest ... aber das nur nebenbei).

[mm] $$A_{\Delta} [/mm] \ = \ [mm] \bruch{1}{2}*a*b$$ [/mm]
In diesem Falle wären $a_$ und $b_$ die beiden Achsenabschnitte der Gerade.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]