matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisFlächenbestimmung/e-Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Flächenbestimmung/e-Funktionen
Flächenbestimmung/e-Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung/e-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Fr 21.05.2004
Autor: Christa

Wie ich diese e-Funktionen doch liebe...(ACHTUNG:Ironie!!)
Also nu hab' ich diese Aufgabe:

Zeige, dass sich die Graphen der Funktionen f mit [mm]f(x)=e^{x+2}[/mm] und g mit [mm]g(x)=2e-e^{-x}[/mm] an der Stelle -1 berühren. Zeichne beide Funktionsgraphen und berechne den Flächeninhalt von beiden Funktionsgraphen und der 2. Achse eingeschlossenen Fläche.

Soweit die Aufgabe. Nu zu meinen Überlegungen.

Ich habe mir gedacht dass man g und f gleichsetzt. Als Ergebniss müsste man ja dann -1 herausbekommen, weil sie sich da ja berühren(oder halt schneiden, was aber in diesem Fall nicht passiert).

Also hab' ich dann:

[mm]e^{x+2}=2e-e^{-x}[/mm]
[mm]\bruch {e^{x+2}}{2e-e^{-x}}=1[/mm]
[mm]e^{x+2}*(2e^{-1}-e^{x}}=1[/mm]
[mm]e^{x+2}*2e^{-1}-e^{x+2}*e^{x}=1[/mm]
[mm]2e^{x+1}-e^{2x+2}=1[/mm]

Ja und jetzt weiß ich nicht so recht weiter, oder hab' ich in meinem Ansatz schon nen Fehler. ICh müsste ja jetzt irgendwie die 2 da weg bekommen. Durch 2 Teilen bringt ja nicht viel denn dann habe ich vor dem anderen 1/2 stehen. Wie mach ich dass dann jetzt?!

Wenn ich dass bewiesen habe, müsste ich zeichen. Das hab' ich och schon gemacht, kein Problem. Um Fläche zu berechnen habe ich mir gedacht, dass die 2.Ache ja die y-Achse ist. Also ist x=0
Also muss ich:

[mm]| \int_{-1}^{0} f(x)-g(x)\, dx |[/mm]

Oder nicht?! ICh hab' das noch nicht gerechnet, aber stimmt der Ansatz?!

Liebe Grüße von der Ich-AG Christa ;-)

P.S.: Ich bezweifel dass meine Schwester für mich je schwarz abtippen würde...Also von daher keine gefahr CDU/SPD-Politiker-stefan ;-)

        
Bezug
Flächenbestimmung/e-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Fr 21.05.2004
Autor: Marc

Hallo Christa,

> Wie ich diese e-Funktionen doch
> liebe...(ACHTUNG:Ironie!!)
>  Also nu hab' ich diese Aufgabe:

Nun, sie sind ja auch leicht in der Handhabung (Achtung: keine Ironie ;-))

> Zeige, dass sich die Graphen der Funktionen f mit
> [mm]f(x)=e^{x+2}[/mm] und g mit [mm]g(x)=2e-e^{-x}[/mm] an der Stelle -1
> berühren. Zeichne beide Funktionsgraphen und berechne den
> Flächeninhalt von beiden Funktionsgraphen und der 2. Achse
> eingeschlossenen Fläche.
>  
> Soweit die Aufgabe. Nu zu meinen Überlegungen.
>
> Ich habe mir gedacht dass man g und f gleichsetzt. Als

Das ist zwar möglich, sogar in diesem speziellen Fall (wie du gleich sehen wirst), aber trotzdem übertrieben.
Du sollte die beiden Funktionen ja nur auf einen gemeinsamen Punkt hin überprüfen, d.h. du mußt nur zeigen, dass die y-Koordinaten beider Funktionen an der Stelle -1 gleich sind:

$f(-1)=g(-1)$
[mm] $\gdw\ e^{-1+2}=2e-e^{-(-1)}$ [/mm]
[mm] $\gdw\ e^1=2e-e^1$ [/mm]
[mm] $\gdw\ [/mm] e=e$ [ok]

Also haben beide Graphen den Punkt $(-1|e)$ gemeinsam.

> Ergebniss müsste man ja dann -1 herausbekommen, weil sie
> sich da ja berühren(oder halt schneiden, was aber in diesem
> Fall nicht passiert).

Hier soll --denke ich-- schon Wert darauf gelegt werden, ob sich die Graphen berühren oder schneiden.
Das ist aber auch nicht schwierig zu unterscheiden.
Und zwar kann man da die Tangentensteigungen der beiden Funktionen an der betreffenden Stelle berechnen, am geschicktesten ist es, die Differenzfunktion $f(x)-g(x)$ auf ein relatives Extremum an der Stelle -1 zu untersuchen:

[mm] $f'(-1)-g'(-1)\stackrel{?}{=}0$ [/mm] und [mm] $f''(-1)-g''(-1)\stackrel{?}{\not=}0$ [/mm]

Falls diese Differenzfunktion ein relatives Extremum dort hat, dann berühren sich die Graphen (und schneiden sich nicht).

> Also hab' ich dann:

Diese Rechnung ist --wie oben vorgeschlagen-- überflüssig, ich korrigiere sie aber trotzdem :-)
  

> [mm]e^{x+2}=2e-e^{-x}[/mm]
>  [mm]\bruch {e^{x+2}}{2e-e^{-x}}=1[/mm]
>  
> [mm]e^{x+2}*(2e^{-1}-e^{x})=1[/mm]

Das ist nicht gut, denn [mm] $\bruch{1}{a+b}\not=\bruch{1}{a}+\bruch{1}{b}$ [/mm] (im allgemeinen).

Man könnte die oberste Gleichung aber so lösen:
[mm] $e^{x+2}=2e-e^{-x}$ |$*(e^x) [/mm]
[mm] $\gdw\ e^{x+2}*e^x=2e*e^x-e^{-x}*e^x$ [/mm]
[mm] $\gdw\ e^{2x+2}=2e^{x+1}-1$ [/mm]
[mm] $\gdw\ e^{2x+2}-2e^{x+1}+1=0$ [/mm]
[mm] $\gdw\ \left( e^{x+1} \right)^2-2e^{x+1}+1=0$ [/mm]  | substituiere [mm] $z:=e^{x+1}$ [/mm]
[mm] $\gdw\ z^2-2z+1=0$ [/mm]
[mm] $\gdw\ (z-1)^2=0$ [/mm]
[mm] $\gdw\ [/mm] z=1$  | resubstituieren
[mm] $\gdw\ e^{x+1}=1$ [/mm]  | logarithmieren
[mm] $\gdw\ x+1=\ln [/mm] 1$
[mm] $\gdw\ [/mm] x+1=0$
[mm] $\gdw\ [/mm] x=-1$
  

> Ja und jetzt weiß ich nicht so recht weiter, oder hab' ich
> in meinem Ansatz schon nen Fehler. ICh müsste ja jetzt
> irgendwie die 2 da weg bekommen. Durch 2 Teilen bringt ja
> nicht viel denn dann habe ich vor dem anderen 1/2 stehen.
> Wie mach ich dass dann jetzt?!

Auch in deiner (fehlerhaften) letzten Gleichung wäre eine Substitution möglich (und nötig) gewesen.

> Wenn ich dass bewiesen habe, müsste ich zeichen. Das hab'
> ich och schon gemacht, kein Problem. Um Fläche zu berechnen
> habe ich mir gedacht, dass die 2.Ache ja die y-Achse ist.
> Also ist x=0

[ok]

> Also muss ich:
>  
> [mm]| \int_{-1}^{0} f(x)-g(x)\, dx |[/mm]
>
> Oder nicht?! ICh hab' das noch nicht gerechnet, aber stimmt
> der Ansatz?!

[ok], perfekt!

Bin gespannt auf deine Ergebnisse.

Liebe Grüße,
Marc

Bezug
                
Bezug
Flächenbestimmung/e-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 21.05.2004
Autor: Christa

Okö, ich seh das alles ein...mhhh hätte ich auch drauf kommen können....ich glaub ich denk bei e-Funktionen viel zu kompliziert weil ich denke das die e-Funktionen kompliziert sind, obwohl die ja gar nicht so kompliziert sind als ich sie für kompliziert halte, ist doch ganz einfach....;-)

Also hier meine Lösungen zu der Flächenberechnung:

[mm]| \int_{-1}^{0} (e^{x+2}-2e+e^{-x})\, dx |[/mm]
[mm]=[e^{x+2}-2ex-e^{-x}[/mm] <--eine Stammfunktion
[mm]=| [(e²-1)-(e^1+2e-e^1)] |[/mm]
[mm]=| e²-1-2e |[/mm]
[mm]=| e²-2e-1 |[/mm]
[mm]= e²-2e-1 [/mm]

Und? Stimmt das?

Liebe Grüße
Ich-AG Christa

Bezug
                        
Bezug
Flächenbestimmung/e-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Fr 21.05.2004
Autor: Marc

Hallo Christa,

> Okö, ich seh das alles ein...mhhh hätte ich auch drauf
> kommen können....ich glaub ich denk bei e-Funktionen viel
> zu kompliziert weil ich denke das die e-Funktionen
> kompliziert sind, obwohl die ja gar nicht so kompliziert
> sind als ich sie für kompliziert halte, ist doch ganz
> einfach....;-)

Nicht nur in der Mathematik scheinst du komplizierte Konstrukte zu mögen ;-)

> Also hier meine Lösungen zu der Flächenberechnung:
>  
> [mm]| \int_{-1}^{0} (e^{x+2}-2e+e^{-x})\, dx |[/mm]
>  
> [mm]=[e^{x+2}-2ex-e^{-x}[/mm] <--eine Stammfunktion
>  [mm]=| [(e²-1)-(e^1+2e-e^1)] |[/mm]
>  [mm]=| e²-1-2e |[/mm]
>  [mm]=| e²-2e-1 |[/mm]
>  
> [mm]= e²-2e-1[/mm]
>  
> Und? Stimmt das?

[ok], ich kann keinen Fehler entdecken :-)

Liebe Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]