matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Flächenbestimmung
Flächenbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 So 13.04.2008
Autor: sid-2004

Aufgabe
der graph  von f(x)= 2*x* e hoch x, die x-achse und die wendetangente begrenzen eine fläche


den wendepunkt  wdp(-1/2;-e hoch (-1/2)
die wendetangente t(x) = e hoch (-1/2) *x +e hoch(-1/2)
und die intervallgrenzen  I=[0;1]
habe ich bestimmt..
um die differenzfunktion zu bestimmen habe ich
f(X)-t(x)= 2*x*ehoch x - e hoch (-1/2)*x + e hoch (-1/2)

meine frage ..
1: kann ich da noch etwas vereinfachen und wie integriere ich das ganze?

2: - e hoch (-1/2)*x  integriert ist dann doch  -1/2* - e hoch (-1/2)*x ² oder?

3: e hoch (-1/2) wird zu  e hoch (-1/2)*x

4: aber was mache ich mit   2*x*ehoch x ?
5: oder darf ich das integral auseinander pflücken?

[mm] \integral_{a}^{b}{2*x dx}+ \integral_{a}^{b}{ ehoch x - e hoch (-1/2)*x + e hoch (-1/2) dx} [/mm]

ich würde mich sehr freuen wenn mir jemadn weiterhelfen könnte



        
Bezug
Flächenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 So 13.04.2008
Autor: maddhe

versuch, das nächste mal mit den hier integrierten formeln zu schreiben.. is kaum lesbar... ich beantworte mal das, was ich verstanden habe:
[mm] $f(x)=2xe^x$ [/mm]
Dann ist [mm] $f''(x)=2e^x(x+2)$ [/mm] und damit der Wendepunkt bei $x=-2$
für die Wendetangentensteigung benötigst du [mm] $f'(-2)=-2e^{-2}$ [/mm] und den Wendepunkt [mm] $(-2/-4e^{-2}$ [/mm] sodass du für die Tangente [mm] $t(x)=-2e^{-2}x-8e^{-2}$ [/mm] herausbekommst...
In der Skizze ist zu sehen, dass man die Integralgrenzen nun wie folgt setzen muss: von -4 (Nullstelle der Tangente - auch auszurechnen) bis -2 ist die Fläche nur zwischen x-achse und Tangente, von -2 bis 0 nur zwischen x-achse und Funktion $f$, sodass du gar keine Differenzfunktion brauchst...
Dann gilt für den Flächeninhalt
[mm] $$A=\left|\int\limits_{-4}^{-2}-2e^{-2}x-8e^{-2}\mathrm{d}x\right|+\left|\int\limits_{-2}^02xe^x\mathrm{d}x\right|$$ [/mm]
[mm] $$=\left|\left[-e^{-2}x^2-8e^{-2}x\right]_{-4}^{-2}\right|+\left|\left[e^x(2x-1)\right]_{-2}^0\right|$$ [/mm]

das ausrechnen überlass ich dir..

zu 2.: [mm] $-e^{-\frac{1}{2}x}$ [/mm] wird integriert zu [mm] $2e^{-\frac{1}{2}x}$ [/mm] - du brauchst immer den faktor davor, der beim ableiten genau wegfällt.. in dem fall kommt beim ableiten [mm] -\frac{1}{2} [/mm] nach vorne, also schreiben wir 2 dazu..
zu 4.: [mm] $2xe^x$ [/mm] muss partiell integriert werden und wird zu [mm] $(2x-1)e^x$ [/mm]
zu 5.: das integral darf immer bei "strichrechnungen" auseinandergezogen werden (sofern diese natürlich nicht in ner klammer steht;-)

wenn du noch fragen zu den umformungen hast, beantworte ich sie gerne!
hier die skizze:
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]