matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächeberechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Flächeberechnen
Flächeberechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeberechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Di 01.11.2011
Autor: Kuriger

Hallo

Berechne die Fläche, welche vom graphen von f(x) = 2x - [mm] x^3/3 [/mm] und der Normalen im Wendepunkt begrenzt wird.


wendepunkt ist bei (0/0)

Bei (0/0) hat die Tangente die Steigung 2, die Normale wäre dann -2. Also lautet die Normaltangente y = -2x


Nun suche ich die Schnittpunkte von
2x - [mm] x^3/3 [/mm]  = -2x

x1 = 0
x2 = 2
x3=-2

Jetzt kann ich wählen zwischen INtegralgrenzen ',2 und 0,-2

Stimmt das soweit?

Danke



        
Bezug
Flächeberechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Mi 02.11.2011
Autor: reverend

Hallo Kuriger,

> Berechne die Fläche, welche vom graphen von f(x) = 2x -
> [mm]x^3/3[/mm] und der Normalen im Wendepunkt begrenzt wird.
>  
> wendepunkt ist bei (0/0)

[ok]

> Bei (0/0) hat die Tangente die Steigung 2, die Normale
> wäre dann -2. Also lautet die Normaltangente y = -2x

[notok]

Die Tangente hat die Steigung 2, die Normale daher die Steigung [mm] -\bruch{1}{2}. [/mm] Also lautet die Geradengleichung der Normalen [mm] y=-\bruch{1}{2}x [/mm]

Ab hier musst Du also nochmal rechnen.

Grüße
reverend

> Nun suche ich die Schnittpunkte von
> 2x - [mm]x^3/3[/mm]  = -2x
>  
> x1 = 0
>  x2 = 2
>  x3=-2
>  
> Jetzt kann ich wählen zwischen INtegralgrenzen ',2 und
> 0,-2
>  
> Stimmt das soweit?
>  
> Danke
>  
>  


Bezug
                
Bezug
Flächeberechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Mi 02.11.2011
Autor: Kuriger

Danke für die Antwort

Der weitere Verlauf passt dann vom vorgehen her?

Ja stimmt m * [mm] m_{normal} [/mm] = -1

oder?

Gruss Kuriger

Bezug
                        
Bezug
Flächeberechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Mi 02.11.2011
Autor: M.Rex

Hallo


> Danke für die Antwort
>  
> Der weitere Verlauf passt dann vom vorgehen her?
>  
> Ja stimmt m * [mm]m_{normal}[/mm] = -1
>  
> oder?
>  
> Gruss Kuriger

So ist es.

Zwei Geraden mit den Steigungen [mm] m_{1} [/mm] und [mm] m_{2} [/mm] sind senkrecht zueinander, genau dann wenn [mm] m_{1}\cdot m_{2}=-1 [/mm]

Und
[mm] m_{1}\cdot m_{2}=-1 [/mm]
[mm] \Leftrightarrow m_{1}=-\frac{1}{m_{2}} [/mm]

Bilde also den Kehrwert und tausche das Vorzeichen, um die Steigung einer Senkrechten zu ermitteln.


Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]