matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenFläche von Ellip per DoppelInt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Fläche von Ellip per DoppelInt
Fläche von Ellip per DoppelInt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche von Ellip per DoppelInt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Fr 23.10.2009
Autor: Sven.H

Aufgabe
Berechne den Flächeninhalt der Ellipse, deren Rand durch die Gleichung [mm] $x^{2}+4xy+6y^{2}=1$ [/mm] beschrieben wird

Hallo!

Ich habe folgendes Problem bei der Aufgabe oben:
Ich möchte die Funktion gerne in eine explizite Form bringen (y(x)=...) damit ich die Randwerte für das Doppelintegral bestimmen kann um den Flächeninhalt auszurechnen.

Ich bekomme Sie aber nicht nach y aufgelöst wegen der $4xy$
Ich habe mich mit dem Satz der impliziten Funktion beschäftigt, aber nicht wirklich verstanden. Ist das der richtige Ansatz um die explizite Form dieser Ellipse zu bekommen bzw um überhaupt den Flächeninhalt zu bestimmen?

Danke!






*Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.*

        
Bezug
Fläche von Ellip per DoppelInt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Fr 23.10.2009
Autor: Al-Chwarizmi


> Berechne den Flächeninhalt der Ellipse, deren Rand durch
> die Gleichung [mm]x^{2}+4xy+6y^{2}=1[/mm] beschrieben wird
>  Hallo!
>  
> Ich habe folgendes Problem bei der Aufgabe oben:
>  Ich möchte die Funktion gerne in eine explizite Form
> bringen (y(x)=...) damit ich die Randwerte für das
> Doppelintegral bestimmen kann um den Flächeninhalt
> auszurechnen.
>  
> Ich bekomme Sie aber nicht nach y aufgelöst wegen der [mm]4xy[/mm]
> Ich habe mich mit dem Satz der impliziten Funktion
> beschäftigt, aber nicht wirklich verstanden. Ist das der
> richtige Ansatz um die explizite Form dieser Ellipse zu
> bekommen bzw um überhaupt den Flächeninhalt zu
> bestimmen?
>  
> Danke!


Für die Flächenberechnung gibt es hier verschie-
dene Methoden:

1.) Du könntest die Gleichung tatsächlich nach y
    auflösen. So käme man auf eine obere Rand-
    funktion [mm] $y_1(x)=\frac{1}{6}\left(\sqrt{6-2\,x^2\,}-2\,x\right)$ [/mm] und die
    entsprechende untere Randfunktion [mm] y_2(x). [/mm]
    So hat man gar kein Doppelintegral, sondern
    nur ein einfaches Integral zu berechnen.
    Trotzdem würde ich diesen Weg nicht empfehlen.

2.) Hauptachsentransformation mit dem Ziel, die
    Längen a und b der Halbachsen zu bestimmen.
    Dann ist [mm] F=\pi*a*b [/mm] .

3.) Affine Transformation, um das lästige gemischte
    Glied loszuwerden und z.B. die Ellipse in einen
    Kreis zu verwandeln. Bei der Flächenberechnung
    muss dann die Determinante der Transformations-
    matrix als Umrechnungsfaktor benützt werden.

LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]