Fläche unter unbek. Funktion < Matlab < Mathe-Software < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:03 Sa 20.10.2012 | Autor: | heiede |
Aufgabe | Fläche unter einer unbekannten Funktion bestimmen. (Mithilfe der X und Y-Werte) |
Hey Leute,
ich habe X und Y-Werte die einen Graph erzeugen. Nun soll ich die Fläche unter dem Graph bestimmen. [Externes Bild http://imageshack.us/a/img832/9202/diagrammc.jpg] Irgendwie müsste man die Y-Werte zusammenrechnen oder?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
danke! :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:48 Sa 20.10.2012 | Autor: | Marcel |
Hallo,
> Fläche unter einer unbekannten Funktion bestimmen.
> (Mithilfe der X und Y-Werte)
> Hey Leute,
> ich habe X und Y-Werte die einen Graph erzeugen.
> Nun soll
> ich die Fläche unter dem Graph bestimmen.
> http://imageshack.us/a/img832/9202/diagrammc.jpg
wie liegen die Werte vor: Ich nehme nämlich stark an, dass Du nur an
diskreten Stellen [mm] $y\,$-Werte [/mm] vorliegen hast, und dass der Graph, den
man oben sieht, durch eine "angefittete Funktion" dargestellt wird.
Da kann man auch schonmal fragen: Wenn Du für die [mm] $x,y\,$-Werte [/mm] eine
konkrete Vermutung für [mm] $f(x)\,$ [/mm] hast (Polynom - hier vielleicht eher
trigonometrisches Polynom), womit "fittest" Du - also wie wird die
Funktion, die die Werte approximiert, beschrieben. Denn eigentlich macht
es nur Sinn, die Fläche der angezeigten Funktion zwischen des Graphen
von [mm] $f\,$ [/mm] und der [mm] $x\,$-Achse [/mm] zu bestimmen, wenn man weiß, wie [mm] $f\,$
[/mm]
aussehen soll. Ansonsten musst Du das Integral approximieren, wenn Du
nur mit den diskreten Werten arbeitest: Da gibt's viele Möglichkeiten,
die aus der Numerik bekannt sind. Eine der einfachsten wäre etwa die
Trapezregel.
> Irgendwie
> müsste man die Y-Werte zusammenrechnen oder?
Nein, im allgemeinen nicht. Aber natürlich kannst Du, wenn Du das Integral
nur näherungsweise berechnen willst, einfach mal, wie man es beim
Riemanintegral macht, Ober- und Untersumme Deiner Werte berechnen -
ist ja auch schon interessant, sich mal ausgeben zu lassen, wie stark die
sich hier unterscheiden. Das wäre eigentlich das erste, was ich jetzt, ohne
irgendwelche Numerik speziell zu bemühen, vorschlagen würde. Und viel
mehr als Rechtecksflächenberechnungen braucht man dafür hier nicht...
Okay, das Maximum bzw. Minimum zweier Funktionswerte sollte man auch
ausrechnen können...
P.S.
Ich habe ganz übersehen, dass Du das ja hier im Matlab-Forum gefragt
hast. Dann such' halt mal nach "numerischen Integrationsverfahren"
mit google, da findest Du Antworten. Und dann musst Du halt gucken,
was da in Matlab/Octave schon umgesetzt worden ist. Ich denke schon,
dass man in Matlab die Trapezregel als eigene Funktion schonmal hat...
Aber testweise kannst Du ja dennoch meinen Vorschlag von oben selbst
umsetzen: Schreibe eine Funktion zur Berechnung der Ober- bzw.
Untersumme. Da würde ich dann auch einfach mit den direkt gegebenen
Werten arbeiten - also dummerweise so, als wenn Du (bei der Integral-
näherungsberechnung) hier eine stückweise konstante Funktion hättest...
Gruß,
Marcel
|
|
|
|