Fläche eines Parallelogramms < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 18:12 Do 01.03.2007 | Autor: | Sippox |
Hallo,
ich soll die Fläche eines Parallelogramms, das durch die Ortsvektoren [mm] \overrightarrow{a}=\vektor{0 \\ 0 \\ 5}, \overrightarrow{b}=\vektor{0 \\ 2 \\ \bruch{5}{2}}, \overrightarrow{c}=\vektor{2 \\ 0 \\ \bruch{5}{3}} [/mm] und [mm] \overrightarrow{d}=\vektor{2 \\ 0 \\ -\bruch{5}{6}} [/mm] fesgelegt ist, bestimmen. Die Fläche ist ja Grundlinie [mm] \* [/mm] Höhe. Nun sollen wir das nach der Strategie machen: Richtungsvektor der Gerade als Normalenvektor der Ebene.
Die Grundlinie ist ja leicht errechnet. Die Höhe soll also so berechnet werden, dass ich zunächst zur Ebene des Parallelogramms einen Normalenvektor bilde und aus dem wiederum eine Ebene aufspanne und dann die beiden geraden des Parallelogramms mit der Ebene schneiden lasse. Aus den daraus folgenden Durchstoßpunkte kann ich ja dann die Höhe ermitteln.
Jetzt habe ich erst mal zwei parallele Geraden vom Parallelogramm aus den Ortsvektoren bestimmt. Einmal [mm] \overrightarrow{b}-\overrightarrow{a} [/mm] und [mm] \overrightarrow{d}-\overrightarrow{c}. [/mm] Das gab dann:
[mm] g_{1}: \overrightarrow{x}=\vektor{0 \\ 0 \\ 5}+\lambda\vektor{0 \\ 2 \\-\bruch{5}{2}}
[/mm]
[mm] g_{2}: \overrightarrow{p}=\vektor{2 \\ 0 \\ \bruch{5}{3}}+\mu\vektor{0 \\ 2 \\-\bruch{5}{2}}
[/mm]
Aus den Punkten habe ich dann auch die Ebene für das Parallelogramm aufgespannt:
[mm] E_{1}: \overrightarrow{k}=\vektor{0 \\ 0 \\ 5}+\lambda_{2}\vektor{0 \\ 2 \\ \bruch{5}{2}}+\nu\vektor{2 \\ 0 \\ \bruch{5}{3}}
[/mm]
Daraus wollte ich jetzt die Normale berechnen, also:
I [mm] 2n_{2}+\bruch{5}{2}n_{3}=0 [/mm] | Skalarprodukt =0 für rechten Winkel
II [mm] 2n_{1}+\bruch{5}{3}n_{3}=0
[/mm]
[mm] n_{1}=-\bruch{5}{6}n_{3}
[/mm]
[mm] n_{2}=-\bruch{5}{4}n_{3}
[/mm]
Dann wäre ja die Normale: [mm] \overrightarrow{n_{1}}=\vektor{-\bruch{5}{6}n_{3} \\ -\bruch{5}{4}n_{3} \\ n_{3}} [/mm] = [mm] \vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ 1}
[/mm]
Nun habe ich wieder eine Ebene aufgespannt. Stützvektor bei Punkt A:
[mm] E_{2}: \overrightarrow{m}=\vektor{0 \\ 0 \\ 5}+ \lambda_{3}\vektor{-\bruch{5}{6}-0 \\ -\bruch{5}{4}-0 \\ 1-5}+\lambda_{4}\vektor{0-0 \\ 2-0 \\ -\bruch{5}{2}-5}=\vektor{0 \\ 0 \\ 5}+ \lambda_{3}\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ -4}+\lambda_{4}\vektor{0 \\ 2 \\ -\bruch{15}{2}}
[/mm]
Jetzt die Durchstoßpunkte berechnen: Gerade 1
[mm] \vektor{0 \\ 0 \\ 5}+ \lambda_{3}\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ -4}+\lambda_{4}\vektor{0 \\ 2 \\ -\bruch{15}{2}}=\vektor{0 \\ 0 \\ 5}+\lambda\vektor{0 \\ 2 \\-\bruch{5}{2}}
[/mm]
Daraus erhalte ich ja dann 3 Gleichungen
I [mm] -\bruch{5}{6}\lambda_{3}=0
[/mm]
II [mm] -\bruch{5}{4}\lambda_{3}+2\lambda_{4}-2\lambda=0
[/mm]
III [mm] -4\lambda_{3}-\bruch{15}{2}\lambda_{4}+\bruch{5}{2}\lambda=0
[/mm]
I [mm] \lambda_{3}=\bruch{5}{6} [/mm] usw.
Gerade 2
[mm] \vektor{0 \\ 0 \\ 5}+ \lambda_{3}\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ -4}+\lambda_{4}\vektor{0 \\ 2 \\ -\bruch{15}{2}}=\vektor{2 \\ 0 \\ \bruch{5}{3}}+\mu\vektor{0 \\ 2 \\-\bruch{5}{2}}
[/mm]
[mm] \lambda_{3}\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ -4}+\lambda_{4}\vektor{0 \\ 2 \\ -\bruch{15}{2}}-\mu\vektor{0 \\ 2 \\-\bruch{5}{2}}=\vektor{2 \\ 0 \\ -\bruch{10}{3}}
[/mm]
I [mm] -\bruch{5}{6}\lambda_{3}=2
[/mm]
II [mm] -\bruch{5}{4}\lambda_{3}+2\lambda_{4}-2\mu=0
[/mm]
III [mm] -4\lambda_{3}-\bruch{15}{2}\lambda_{4}+\bruch{5}{2}\mu=-\bruch{10}{3}
[/mm]
Jetzt wollte ich fragen, ob das soweit richtig ist und wenn ich dann die lambdas und mus ausgerechnet habe und in die Ebenen- oder Geradengleichung einsetze, dann habe ich doch die zwei Punkte oder nicht?
MfG
Sippox
|
|
|
|
Hallo Sippox,
> ich soll die Fläche eines Parallelogramms, das durch die
> Ortsvektoren [mm]\overrightarrow{a}=\vektor{0 \\ 0 \\ 5}, \overrightarrow{b}=\vektor{0 \\ 2 \\ \bruch{5}{2}}, \overrightarrow{c}=\vektor{2 \\ 0 \\ \bruch{5}{2}}[/mm]
> und [mm]\overrightarrow{d}=\vektor{2 \\ 0 \\ -\bruch{5}{6}}[/mm]
> fesgelegt ist, bestimmen. Die Fläche ist ja Grundlinie [mm]\*[/mm]
> Höhe. Nun sollen wir das nach der Strategie machen:
> Richtungsvektor der Gerade als Normalenvektor der Ebene.
> Die Grundlinie ist ja leicht errechnet. Die Höhe soll also
> so berechnet werden, dass ich zunächst zur Ebene des
> Parallelogramms einen Normalenvektor bilde und aus dem
> wiederum eine Ebene aufspanne und dann die beiden geraden
> des Parallelogramms mit der Ebene schneiden lasse. Aus den
> daraus folgenden Durchstoßpunkte kann ich ja dann die Höhe
> ermitteln.
> Jetzt habe ich erst mal zwei parallele Geraden vom
> Parallelogramm aus den Ortsvektoren bestimmt. Einmal
> [mm]\overrightarrow{b}-\overrightarrow{a}[/mm] und
> [mm]\overrightarrow{d}-\overrightarrow{c}.[/mm] Das gab dann:
> [mm]g_{1}: \overrightarrow{x}=\vektor{0 \\ 0 \\ 5}+\lambda\vektor{0 \\ 2 \\-\bruch{5}{2}}[/mm]
>
> [mm]g_{2}: \overrightarrow{p}=\vektor{2 \\ 0 \\ \bruch{5}{3}}+\mu\vektor{0 \\ 2 \\-\bruch{5}{2}}[/mm]
>
> Aus den Punkten habe ich dann auch die Ebene für das
> Parallelogramm aufgespannt:
> [mm]E_{1}: \overrightarrow{k}=\vektor{0 \\ 0 \\ 5}+\lambda_{2}\vektor{0 \\ 2 \\ \bruch{5}{2}}+\nu\vektor{2 \\ 0 \\ \bruch{5}{3}}[/mm]
wie hast du denn den 2. Richtungsvektor ermittelt?
>
> Daraus wollte ich jetzt die Normale berechnen, also:
> I [mm]2n_{2}+\bruch{5}{2}n_{3}=0[/mm] | Skalarprodukt =0 für
> rechten Winkel
> II [mm]2n_{1}+\bruch{5}{3}n_{3}=0[/mm]
>
> [mm]n_{1}=-\bruch{5}{6}n_{3}[/mm]
> [mm]n_{2}=-\bruch{5}{4}n_{3}[/mm]
>
> Dann wäre ja die Normale:
> [mm]\overrightarrow{n_{1}}=\vektor{-\bruch{5}{6}n_{3} \\ -\bruch{5}{4}n_{3} \\ n_{3}}[/mm]
> = [mm]\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ 1}[/mm]
>
Das Prinzip ist richtig.
Jetzt höre ich erst mal auf, zu kontrollieren.
Eine Bitte: sag doch nicht immer "eine "Ebene", sondern beschreibe die Ebene etwas genauer, damit wir schneller erkennen können, was du meinst..
etwa so: [mm] E_1: $\vec x=\vec [/mm] a + [mm] \lambda(\vec b-\vec a)+\mu(\vec c-\vec [/mm] a)$ oder entsprechend.
> Nun habe ich wieder eine Ebene aufgespannt. Stützvektor bei
> Punkt A:
>
> [mm]E_{2}: \overrightarrow{m}=\vektor{0 \\ 0 \\ 5}+ \lambda_{3}\vektor{-\bruch{5}{6}-0 \\ -\bruch{5}{4}-0 \\ 1-5}+\lambda_{4}\vektor{0-0 \\ 2-0 \\ -\bruch{5}{2}-5}=\vektor{0 \\ 0 \\ 5}+ \lambda_{3}\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ -4}+\lambda_{4}\vektor{0 \\ 2 \\ -\bruch{15}{2}}[/mm]
>
> Jetzt die Durchstoßpunkte berechnen: Gerade 1
>
> [mm]\vektor{0 \\ 0 \\ 5}+ \lambda_{3}\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ -4}+\lambda_{4}\vektor{0 \\ 2 \\ -\bruch{15}{2}}=\vektor{0 \\ 0 \\ 5}+\lambda\vektor{0 \\ 2 \\-\bruch{5}{2}}[/mm]
>
> Daraus erhalte ich ja dann 3 Gleichungen
> I [mm]-\bruch{5}{6}\lambda_{3}=0[/mm]
> II [mm]-\bruch{5}{4}\lambda_{3}+2\lambda_{4}-2\lambda=0[/mm]
> III
> [mm]-4\lambda_{3}-\bruch{15}{2}\lambda_{4}+\bruch{5}{2}\lambda=0[/mm]
>
> I [mm]\lambda_{3}=\bruch{5}{6}[/mm] usw.
>
> Gerade 2
>
> [mm]\vektor{0 \\ 0 \\ 5}+ \lambda_{3}\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ -4}+\lambda_{4}\vektor{0 \\ 2 \\ -\bruch{15}{2}}=\vektor{2 \\ 0 \\ \bruch{5}{3}}+\mu\vektor{0 \\ 2 \\-\bruch{5}{2}}[/mm]
>
>
> [mm]\lambda_{3}\vektor{-\bruch{5}{6} \\ -\bruch{5}{4} \\ -4}+\lambda_{4}\vektor{0 \\ 2 \\ -\bruch{15}{2}}-\mu\vektor{0 \\ 2 \\-\bruch{5}{2}}=\vektor{2 \\ 0 \\ -\bruch{10}{3}}[/mm]
>
> I [mm]-\bruch{5}{6}\lambda_{3}=2[/mm]
> II [mm]-\bruch{5}{4}\lambda_{3}+2\lambda_{4}-2\mu=0[/mm]
> III
> [mm]-4\lambda_{3}-\bruch{15}{2}\lambda_{4}+\bruch{5}{2}\mu=-\bruch{10}{3}[/mm]
>
> Jetzt wollte ich fragen, ob das soweit richtig ist und wenn
> ich dann die lambdas und mus ausgerechnet habe und in die
> Ebenen- oder Geradengleichung einsetze, dann habe ich doch
> die zwei Punkte oder nicht?
>
> MfG
>
> Sippox
Gruß informix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:09 Sa 03.03.2007 | Autor: | Sippox |
|
|
|
|