Fixpunkte < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei C [mm] \subset \IR^n [/mm] geschlossen unf f: C [mm] \to [/mm] C eine Kontraktion mir Fixpunkt [mm] x_f [/mm] und Konstante [mm] q_f \in [/mm] (0,1). Für beliebige [mm] x_o \in [/mm] C definiere man eine Folge [mm] x_r \subset [/mm] D durch [mm] x_{r+1}=f(x_r) [/mm] (r=0,1,...).
a) Man zeige, dass [mm] \limes_{r,f\rightarrow\infty}\parallel x_r [/mm] - [mm] x_f \parallel [/mm] = 0. Da [mm] \IR^n [/mm] komplett ist, konvergiert die Folge [mm] x_r. [/mm] Man zeige also, dass [mm] x_r \to x_f. [/mm] Man folgt dann draus, dass [mm] x_f [/mm] der eindeutige Fixpunkt von f ist.
b) Sei g: C [mm] \to [/mm] C noch eine weitere kontrahierende Abbildung mit Fixpunkt [mm] x_g. [/mm] Man benutze Teil a), um die folgende Ungleich zu zeigen:
[mm] \parallel x_f [/mm] - [mm] x_g \parallel \le \bruch{sup z \in C \parallel f(z) - g(z) \parallel }{1-q_f} [/mm] |
Hi, bei diesen beiden Aufgaben komme ich gerade irgendwie nicht weiter. Man muss wohl sicherlich den Banachfixpuntsatz anwenden, aber irgendwie kriege ich das gerade nicht hin.
Wäre echt nett, wenn mir wer helfen könnte.
Grüße
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:19 Di 04.05.2010 | Autor: | jaruleking |
Hi,
hat keiner hierzu ne Idee? Wäre echt super.
Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:07 Mi 05.05.2010 | Autor: | fred97 |
> Sei C [mm]\subset \IR^n[/mm] geschlossen unf f: C [mm]\to[/mm] C eine
> Kontraktion mir Fixpunkt [mm]x_f[/mm] und Konstante [mm]q_f \in[/mm] (0,1).
> Für beliebige [mm]x_o \in[/mm] C definiere man eine Folge [mm]x_r \subset[/mm]
> D durch [mm]x_{r+1}=f(x_r)[/mm] (r=0,1,...).
>
> a) Man zeige, dass [mm]\limes_{r,f\rightarrow\infty}\parallel x_r[/mm]
> - [mm]x_f \parallel[/mm] = 0.
Was soll das f unter dem Limes ?? Es soll wohl lauten:
[mm]\limes_{r \rightarrow\infty}\parallel x_r[/mm] - [mm]x_f \parallel[/mm] = 0.
> Da [mm]\IR^n[/mm] komplett ist, konvergiert die
> Folge [mm]x_r.[/mm] Man zeige also, dass [mm]x_r \to x_f.[/mm] Man folgt dann
> draus, dass [mm]x_f[/mm] der eindeutige Fixpunkt von f ist.
a) ist doch nichts anderes als die Aussage des Banachschen Fixpunktsatzes !!!
FRED
>
> b) Sei g: C [mm]\to[/mm] C noch eine weitere kontrahierende
> Abbildung mit Fixpunkt [mm]x_g.[/mm] Man benutze Teil a), um die
> folgende Ungleich zu zeigen:
>
> [mm]\parallel x_f[/mm] - [mm]x_g \parallel \le \bruch{sup z \in C \parallel f(z) - g(z) \parallel }{1-q_f}[/mm]
>
> Hi, bei diesen beiden Aufgaben komme ich gerade irgendwie
> nicht weiter. Man muss wohl sicherlich den
> Banachfixpuntsatz anwenden, aber irgendwie kriege ich das
> gerade nicht hin.
>
> Wäre echt nett, wenn mir wer helfen könnte.
>
> Grüße
|
|
|
|