Fixpunkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:42 Do 13.01.2011 | Autor: | Ray07 |
Aufgabe | Sei E [mm] \subset \IR [/mm] mit E [mm] \not= \emptyset [/mm] und f : E [mm] \to [/mm] E stetig. Zeigen Sie folgende Aussage
(Fixpunktiteration): Ist [mm] x_{n+1} [/mm] = f(xn) konvergent, dann ist [mm] \bar{x}:= [/mm] lim [mm] x_n [/mm] ein
Fixpunkt von f (d.h. es gilt [mm] \bar{x} [/mm] = [mm] f(\bar{x})). [/mm] |
hey leute
habe große probleme mit der aufgabe
über fixpunkte weiß ich nur das, was da steht
ausserdem verstehe ich nciht wirklich was ich da zeigen soll
ich dachte ja, dass wenn [mm] f(x_n) [/mm] konvergent ist dann gilt das alle [mm] f(x_n) \to \bar{x} [/mm] (für n [mm] \to \infty [/mm] und wegen der stetig keit gilt das wenn [mm] x_n \to \bar{x} [/mm] => [mm] f(x_n) \to f(\bar{x}) [/mm] (beides für n [mm] \to \infty)
[/mm]
ich verstehe das [mm] x_{n+1} [/mm] = [mm] f(x_n) [/mm] nicht so wirklich
BITTE hilfe
LG
|
|
|
|
> Sei E [mm]\subset \IR[/mm] mit E [mm]\not= \emptyset[/mm] und f : E [mm]\to[/mm] E
> stetig. Zeigen Sie folgende Aussage
> (Fixpunktiteration): Ist [mm]x_{n+1}[/mm] = f(xn) konvergent, dann
> ist [mm]\bar{x}:=[/mm] lim [mm]x_n[/mm] ein
> Fixpunkt von f (d.h. es gilt [mm]\bar{x}[/mm] = [mm]f(\bar{x})).[/mm]
> hey leute
> habe große probleme mit der aufgabe
> über fixpunkte weiß ich nur das, was da steht
> ausserdem verstehe ich nciht wirklich was ich da zeigen
> soll
Na sei [mm]f:E\to E[/mm] stetig mit [mm]\emptyset \neq E\subset \IR[/mm] und [mm](x_n)_{n\in \IN}^\infty[/mm] eine konvergente Folge mit [mm]\lim_{n\to\infty}x_n=\bar{x}[/mm].
z.z. [mm]\bar{x}=f(\bar{x})[/mm].
Du weißt, dass bei stetigen Funktionen f gilt [mm]\lim f(x_k)=f(\lim x_k))[/mm]. Außerdem weißt du, dass der Grenzwert eindeutig ist.
>
> ich dachte ja, dass wenn [mm]f(x_n)[/mm] konvergent ist dann gilt
> das alle [mm]f(x_n) \to \bar{x}[/mm] (für n [mm]\to \infty[/mm] und wegen
insgesamt ja hier aber erst [mm]f(x_n)\to f(\bar{x})[/mm]
> der stetig keit gilt das wenn [mm]x_n \to \bar{x}[/mm] => [mm]f(x_n) \to f(\bar{x})[/mm]
> (beides für n [mm]\to \infty)[/mm]
Ähm ja.
[mm]x_k=f(x_{k-1})\Rightarrow \lim x_k = \lim f(x_{k-1})\overbrace{=}^{\textrm{f stetig}}f(\lim x_{k-1})=f(\bar{x})[/mm] und [mm]\lim x_k =\bar{x}[/mm]. Dann hast du es.
>
> ich verstehe das [mm]x_{n+1}[/mm] = [mm]f(x_n)[/mm] nicht so wirklich
Kennst du den Fixpunktsatz. Du suchst eine Lösung der Gleichung f(x)=x. Das kann man i.A. nicht explizit ausrechen. Somit gibt es die Iterationsvorschrift [mm]x_{n+1}=f(x_n)[/mm]. Wenn du den Startwert [mm]x_0[/mm] günstig wählst (siehe Fixpunktsatz) und das f eine Selbstabbildung (wie oben) ist, dann konvergiert dieses [mm]x_k[/mm] gegen Lösung der Gleichung f(x)=x. Genügt f der Lippschitz- Bedingung, so ist der Fixpunkt sogar eindeutig.
Man kann sich das auch grafisch vorstellen:
[Dateianhang nicht öffentlich]
Es wird der Fixpunkt von einer Funktion f mit dem blauen Grafen gesucht. Man wählt es [mm]x_0[/mm] ist nicht auf dem Bild und bildet [mm]f(x_0)[/mm] auch nicht auf dem Bild zu sehen. Jetzt wird [mm]x_1:=f(x_0)\approx 1.325[/mm] im Bild. Setzt man [mm]x_1[/mm] wieder in f ein gelangt man zum Punkt (1.34,1.44) Also ist [mm]x_2=1.44[/mm]. Und das Spiel beginnt von vorne.
>
> BITTE hilfe
>
> LG
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:26 Do 13.01.2011 | Autor: | Ray07 |
erst mal danke für deine antwort du hast mir sehr geholfen
habe aber leider noch ein paar fragen
du schließt aus [mm] f(x_n) [/mm] ist konvergent, dass [mm] (x_n)_{n\in \IN} [/mm] ist oder?
und man weiß, da [mm] f(x_n) [/mm] konvergent ist und man den lim [mm] x_n \to \bar{x} [/mm] konvergiert, dass [mm] f(x_n) \to f(\bar{x}]?
[/mm]
dann hab ich noch eine allgemeine frage
man hatte hier ja die vorschrift
[mm] x_k [/mm] = [mm] f(x_{k-1}) [/mm] dann folgst du daraus dass
[mm] lim(x_k) [/mm] = lim [mm] f(x_{k-1})
[/mm]
wie hast du darauf gefolgert?
einfach den grenzwert auf beiden gesetzt, was man ja machen darf, da er ja existiert, da sie konvergent ist?
vielen dank nochmal für deine antwort
|
|
|
|
|
Ich schließ aus $ [mm] x_{k+1}$ [/mm] die Konvergenz, das ist ja nun das gleich wie [mm] f(x_k). [/mm]
Wegen Konvergenz gilt nun die Gleichungskette
[mm] $\bar{x}=\lim x_{k+1}=\lim f(x_k)=f(\lim x_k)=f(\bar{x})$
[/mm]
Ich wollte es nur nicht vorhin so aufschreiben , da man ja aus der Mitte heraus in beide Richtungen schließen muss.
Zur allgemeinen Frage
es herrscht ja schon Gleichheit, da funktioniert die Grenzbetrachtung (insb. Wegen der Konvergenz )
sonst darfst du es ja nicht machen:
[mm] $0<\frac{1}{n} \forall n\geq [/mm] 1$ impliziert jetzt natürlich nicht, dass das auch für den Grenzübergang klappt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:56 Do 13.01.2011 | Autor: | Ray07 |
okay
vielen vielen dank^^
wünsch dir noch eine gute nacht und nochmal danke
LG
|
|
|
|