Fit einer Ellipse < Mathematica < Mathe-Software < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:17 Mo 26.12.2011 | Autor: | PaRu |
Ich habe ein paar Punkte, die auf einer Ellipse liegen (siehe Anhang). Die Funktion der entsprechenden Ellipse möchte ich anhand der Punkte über einen Algorithmus erhalten.
Ich habe bei Wolfram folgende Demo gefunden, aber ich verstehe nicht, was da gemacht wird, so dass ich es leider nicht auf mein Problem abändern kann.
http://demonstrations.wolfram.com/LeastSquaresEstimationOfAnEllipse/
Ich habe auch noch folgende Veröffentlichung gefunden, die ich aber ebenfalls nicht nachvollziehen kann.
http://autotrace.sourceforge.net/WSCG98.pdf
In der Veröffentlichung steht sogar ein Matlab-Quellcode, aber ich kenne die entsprechenden Befehle für Mathematica nicht.
Kann mir jemand bitte einen Tip geben, wie ich mein Problem lösen kann.
Dateianhänge: Anhang Nr. 1 (Typ: nb) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:35 Di 27.12.2011 | Autor: | ullim |
Hi,
bei dem Beitrag von Wolfram handelt es sich um einen einfachen Least Square Fit für die Parameter a und b der Ellipse. Die exakte Ellipsengleichungen lautet
[mm] F(x,y,a,b)=\left(\bruch{x}{a}\right)^2+\left(\bruch{y}{b}\right)^2-1=0 [/mm] mit [mm] a=\wurzel{2} [/mm] und b=2
Wenn Du Werte für x hast (im Beispiel Zufallszahlen zwischen [mm] -\wurzel{2}-0.1 [/mm] und [mm] \wurzel{2}+0.1) [/mm] setzt Du diese in F(x,y,a,b) ein und löst nach y auf. So bekommst Du für jeden x Wert einen y Wert der genau auf der Ellipse liegt. Auf diesen y Wert addierst Du einen Fehler (im Beispiel eine normalverteilte Zahl). Die so erhaltenen Wertepaare [mm] (\tilde{y},x) [/mm] sind Basis für die kleinste Quadrate Schätzung. Jetzt musst Du für die Funktion [mm] F(x,\tilde{y},a,b) [/mm] Parameter a und b finden, die die Funktion im Sinne der kleinsten Quadrate minimiert.
Der zitierte Artikel ist die Verallgemeinerung von obigem auf eine Ellipse die aus einem allg. Kegelschnitt entsteht. Das Wolfram Beispiel ist ja eine Ellipse mit Ursprung im Nullpunkt und sie ist achsenparallel und somit eine spezielle Ellipse.
|
|
|
|