Finden eines orthogonalen Vekt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [mm] \pmat{ 2/sqrt(6) & 0 \\ 1/sqrt(6) & -1/sqrt(2) \\ 1/sqrt(6) & 1/sqrt(2)} [/mm] |
Hallo,
ich hab hier eben die zwei o.g. Vektoren. Diese Matrix muss nun zu einer orthonromalen Basis des [mm] R^3 [/mm] ergänzt werden, warum usw. ist klar
Als Lösung um auf die Basis zu kommen habe ich den vektor
[mm] \vektor{-1/sqrt(3) \\ 1/sqrt(3) \\ 1/sqrt(3)}
[/mm]
vor mir.
Meine Frage dazu: wie errechnet man sich den? Gibts da irgendeinen Trick den ich noch nicht gesehen habe? weil herumprobieren während einer Prüfung wird etwas zu lange dauern
Danke & lg
|
|
|
|
> [mm]\pmat{ 2/sqrt(6) & 0 \\ 1/sqrt(6) & -1/sqrt(2) \\ 1/sqrt(6) & 1/sqrt(2)}[/mm]
>
> Hallo,
>
> ich hab hier eben die zwei o.g. Vektoren. Diese Matrix muss
> nun zu einer orthonromalen Basis des [mm]R^3[/mm] ergänzt werden,
> warum usw. ist klar
>
> Als Lösung um auf die Basis zu kommen habe ich den vektor
>
> [mm]\vektor{-1/sqrt(3) \\ 1/sqrt(3) \\ 1/sqrt(3)}[/mm]
>
> vor mir.
>
> Meine Frage dazu: wie errechnet man sich den? Gibts da
> irgendeinen Trick den ich noch nicht gesehen habe? weil
> herumprobieren während einer Prüfung wird etwas zu lange
> dauern
Naja, wie man halt so einen Vektor berechnet:
1. Bedingung: Der gesuchte Vektor [mm] \vektor{b_1 \\ b_2 \\ b_3} [/mm] soll senkrecht auf dem ersten Vektor stehen, also muss das Skalarprodukt der beiden 0 ergeben. Das ergibt eine Gleichung mit drei Variablen.
2. Bedingung: Der gesuchte Vektor [mm] \vektor{b_1 \\ b_2 \\ b_3} [/mm] soll senkrecht auf dem zweiten Vektor stehen, also muss das Skalarprodukt der beiden 0 ergeben. Das ergibt eine zweite Gleichung mit drei Variablen (naja, wegen der 0 im gegebenen Vektor sind es dann doch nur 2).
Alternative zu 1+2 (falls bekannt): Das Kreuzprodukt (Vektorprodukt, es gibt verschiedene Namen dafür) der beiden gegebenen Vektoren gibt dir einen Vektor an, der zu beiden orthogonal steht.
3. Bedingung: Der gesuchte Vektor [mm] \vektor{b_1 \\ b_2 \\ b_3} [/mm] soll normiert sein. Das gibt dir eine dritte Gleichung.
Ich würde folgendes Vorgehen vorschlagen:
Falls Kreuzprodukt bekannt, damit einen Vektor ausrechnen. Ansonsten mit 1.+2. ebenfalls einen Vektor ausrechnen.
Im zweiten Schritt dann diesen berechneten Vektor normieren.
Das ist i.d.R. angenehmer als mit den drei Gleichungen gleichzeitig zu hantieren.
>
> Danke & lg
lg weightgainer
|
|
|
|
|
ok, danke ich habs gelöst.
hab einfach die ersten zwei gegebenen orthonormierten vektoren hergenommen, den vektor [1 1 [mm] 1]^T [/mm] angenommen und hab ihn mit dem dem Orthonomierungsverfahren von Gram schmidt "bearbeitet" :-D
danke für deine hilfe!
lg
buzzzzzzzzzzzzzzzzz
|
|
|
|