matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionFibonaccifolge Beweis Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Fibonaccifolge Beweis Formel
Fibonaccifolge Beweis Formel < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonaccifolge Beweis Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Fr 29.11.2013
Autor: flexi1

Hallo,
ich hätte mal wieder eine Frage zur Fiboaccifolge:

Vorweg zum Sicherheit die Definition für die Fibonaccifolge (die Null wird hierbei weggelassen)
[mm] f_1=f_2=1,\;\;\;f_{n+2}=f_n+f_{n+1} [/mm]  

Für die Berechnung der ersten n-Fibonaccizahlen mit ungeraden Index gibt es folgende Formel:
[mm] \summe_{i=1}^{n} f_{2i-1}=f_{2n} [/mm]
Soweit so klar. Allerdings habe ich Probleme bei dem Beweis der Formel:
Man kann ja sagen das [mm] f_1=f_2=1 [/mm] ist und [mm] f_{2i-1} =f_{2i}-f_{2i-2} [/mm] für [mm] i\ge2 [/mm] .
Nun soll die linke Seite in der Form [mm] f_{2}+\summe_{i=2}^{n}(f_{2i}-f_{2i-2}) [/mm] = [mm] f_{2n} [/mm] darstellbar sein, was ja dann genau die Behauptung wäre.
Irgendwie kann ich das nicht so ganz nachvollziehen.
Wäre nett, wenn mir jemand helfen könnte.
Danke schon mal im voraus. ;)
LG

---------------------------------------------------------
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fibonaccifolge Beweis Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Fr 29.11.2013
Autor: abakus


> Hallo,
> ich hätte mal wieder eine Frage zur Fiboaccifolge:

>

> Vorweg zum Sicherheit die Definition für die
> Fibonaccifolge (die Null wird hierbei weggelassen)
> [mm]f_1=f_2=1,\;\;\;f_{n+2}=f_n+f_{n+1}[/mm]

>

> Für die Berechnung der ersten n-Fibonaccizahlen mit
> ungeraden Index gibt es folgende Formel:
> [mm]\summe_{i=1}^{n} f_{2i-1}=f_{2n}[/mm]
> Soweit so klar. Allerdings habe ich Probleme bei dem Beweis
> der Formel:
> Man kann ja sagen das [mm]f_1=f_2=1[/mm] ist und [mm]f_{2i-1} =f_{2i}-f_{2i-2}[/mm]
> für [mm]i\ge2[/mm] .
> Nun soll die linke Seite in der Form
> [mm]f_{2}+\summe_{i=2}^{n}(f_{2i}-f_{2i-2})[/mm] = [mm]f_{2n}[/mm]
> darstellbar sein, was ja dann genau die Behauptung wäre.
> Irgendwie kann ich das nicht so ganz nachvollziehen.
> Wäre nett, wenn mir jemand helfen könnte.
> Danke schon mal im voraus. ;)
> LG

>

> ---------------------------------------------------------
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
werden wir doch mal konkret:
[mm]\summe_{i=1}^{n} f_{2i-1}[/mm] bedeutet [mm] $f_1$+$f_3$+$f_5$+... [/mm]
Dabei lässt sich [mm] $f_1$ [/mm] aus verständlichen Gründen nicht unter Bezug auf vorhergegende Folgenglieder darstellen, aber ab [mm] $f_3$ [/mm] ist dies möglich.
So ist es laut deiner Formel [mm]f_{2i-1} =f_{2i}-f_{2i-2}[/mm] möglich,
[mm] $f_3$ [/mm] als [mm] $f_4-f_2$, $f_5$ [/mm] als [mm] $f_6-f_4$, $f_7$ [/mm] als [mm] $f_8-f_6$ [/mm] darzustellen.
Aus  [mm] $f_1$+$f_3$+$f_5$+...wird [/mm] somit
[mm] $f_1$+($f_4-f_2$)+($f_6-f_4$)+($f_8-f_6$)+... [/mm]
Da subtrahiert sich so gut wie alles weg.
Übrig bleiben [mm] $f_1$ [/mm] und in der letzten addierten Klammer das f mit dem höchsten vorkommenden Index.
Gruß Abakus
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]