matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle AnalysisFallunterscheidung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis" - Fallunterscheidung
Fallunterscheidung < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fallunterscheidung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:40 Mo 20.11.2006
Autor: beta83

Aufgabe
[mm] |r-r^{'}|-|r+r^{'}| [/mm]

Hallo,

kann mir bitte einer die Fallunterscheidung machen??

Vielen Dank,

Gruß beta83

        
Bezug
Fallunterscheidung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 20.11.2006
Autor: hase-hh

moin,

im prinzip musst du bei der betragsfunktion prüfen, ob das, was zwischen den betragsstrichen steht, größergleich null ist oder kleiner als null ist.


1. Fall

r-r' <0  =>   | r - r' | = (-1) * (r - r')


2. Fall

r-r' [mm] \ge [/mm] 0 => | r - r' | = r - r'


3. Fall

r+r' < 0  => | r + r' | = (-1) * (r + r')


4. Fall

r+r' [mm] \ge [/mm] 0 => | r + r' | = r + r'


letzter schritt, in deiner aufgabe:

du musst die möglichen kombinationen

zusammen stellen:

1.) r-r'  [mm] \ge [/mm] 0  und r+r' [mm] \ge [/mm] 0

2.) r-r'  [mm] \ge [/mm] 0  und r+r' < 0

3.) r-r' < 0  und r+r' [mm] \ge [/mm] 0

4.) r-r' < 0 und r+r' < 0



gruss
wolfgang






Bezug
                
Bezug
Fallunterscheidung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:34 Mo 20.11.2006
Autor: beta83

Aufgabe
[mm] |r-r^{'}|-|r+r^{'}|=\begin{cases} -2r, & \mbox{für } r

Hallo Wolfgang,

das gleiche hab ich ja auch rausbekommen. Warum steht aber in der Lösung das was ich oben hingeschrieben habe?

Gruss beta83

Bezug
                        
Bezug
Fallunterscheidung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Di 21.11.2006
Autor: M.Rex

Hallo

Du kannst die Terme ja zusammenfassen, wenn du die Betragsstriche weglässt.

Nehmen wir r-r' [mm] \ge [/mm] 0 [mm] \gdw [/mm] r [mm] \ge [/mm] r'

Dann gilt:

|r-r'|-|r+r'|=r-r'-r-r'=-2r'

Analog behandelst du den anderen Fall

Marius

Bezug
                        
Bezug
Fallunterscheidung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:24 Di 21.11.2006
Autor: hase-hh

moin [mm] \beta, [/mm]

ich habe mal zwei mal drei fälle durchgespielt, ich fand folgendes...

1. r > s

1a)  -3 > -4    |-3 - -4| - |-3 + -4|    allg.   r -s - (-r-s) = 2r

1b)   1 > -5    |1 - -5| - |1 + -5|    allg.   r -s - (-r-s) = 2r

1c)   6 > 2      |6 - 2| - |6 + 2|    allg.   r -s - (r+s) = -2s


2. r < s

2a) -5 < -3   |-5 - -3| - |-5 + -3|    allg.  -r +s - (-r-s) = 2s

2b) -4 < 2   |-4 - 2| - |-4 + 2|    allg.   -r +s - (-r-s) = 2s

2c) 1 < 6   |1 - 6| - |1 + 6|    allg.   -r +s - (r+s) = -2r  


gruß
wolfgang





Bezug
                                
Bezug
Fallunterscheidung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:30 Di 21.11.2006
Autor: hase-hh

warum habe ich noch andere lösungen heraus, als in der musterlösung?

gruss
wolfgang

Bezug
                                        
Bezug
Fallunterscheidung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 23.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]