matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesFaktorenanalyse
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Faktorenanalyse
Faktorenanalyse < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorenanalyse: Tipp, Rueckfrage
Status: (Frage) überfällig Status 
Datum: 15:20 Di 09.01.2018
Autor: TS85

Aufgabe
Führen sie eine Varimax-Rotation mit der vorhandenen Faktorladung durch bis die optimale Lösung gefunden wurde.

Hallo,

habe eine allgemeine Frage zu der ich keine genauen Formelangaben finde, weder in der Hochschulliteratur,
noch im Internet.
Ich muss eine Faktorenanalyse durchführen bei der mir aktuell
die Gewissheit fehlt, dass das was ich mache richtig ist.

Mein Problem startet am Punkt der Rotation (2 Faktoren):
Aktuell verwende ich eine Faktorladungsmatrix, bestehend aus
den Eigenvektoren, welche die höchsten Eigenwerte aufweisen (nach Kaiser-Kriterium EW>1).
Leider habe ich nun auch schon Formelangaben gesehen, welche die Faktorladungsmatrix mit dem Eigenwert skalieren.

Ich verwende die Varimax-Rotation mit der
Formel K* =L*T
mit K* = rotierte Faktorladungsmatrix
mit K = unrotierte Faktorladungsmatrix (Eigenvektoren)
und L = Drehmatrix der Ebene [mm] R^2 [/mm]

Leider fehlen mir dazu vollkommen die Angaben, wie viel
rotiert wird. Meist beschränken sich die Aussagen in Literatur auf "Rotieren bis...".
Zusätzlich entsteht das Problem, dass meine neuen
Faktorladungen nach der Rückrechnung immer wieder zu der
gleichen Korrelationsmatrix führen, wodurch etwas nicht stimmen kann bei dieser Art des Rotationsverfahrens.

Handelt es bei der Rotation um ein Optimierungsproblem,
oder gibt es eine feste Logik, die immer gilt?
(Zusätzliche Frage wäre noch, in welche Achsenrichtung wird in [mm] R^3 [/mm] rotiert)


Hilfe wäre nett,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktorenanalyse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Mi 10.01.2018
Autor: TS85

Vielen Dank für die massive Anteilnahme, ich habe mir mittlerweile den Lösungsweg erdacht. Leider ist die Literatur und das Internet voll von falschen und unvollständigen Angaben. Bei der Faktorladungsmatrix handelt es sich um die Korrelation der Variablen zu den Faktoren, d.h. die Faktoren werden über die Eigenvektoren errechnet.

Bezug
        
Bezug
Faktorenanalyse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Do 11.01.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]