matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikFaktor f. geometr.wachs. Rente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - Faktor f. geometr.wachs. Rente
Faktor f. geometr.wachs. Rente < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktor f. geometr.wachs. Rente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Mi 07.03.2007
Autor: waldmeister

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bin auf der Suche einer Formel zur Berechnung einer geometrisch wachsenden endlichen Rente aus einem gegebenen Wert. Eine Art Annuitätenfaktor, nur mit dem Unterschied, dass sich die "Annuität" in jeder Periode um x% erhöht. Kann mir hierbei jemand behilflich sein?

Gegeben sind folgende Werte:

- zu verrentendes Kapital "KW"
- Dauer der Rente "n"
- Satz der Kapitalverzinsung "p"
- Steigerungsrate der Rente pro Periode "x"

Vielen Dank für die Unterstützung.

mfG

        
Bezug
Faktor f. geometr.wachs. Rente: Geometrisch wachsende Reihe
Status: (Antwort) fertig Status 
Datum: 12:37 Do 08.03.2007
Autor: heyks

Hallo Carsten

> Ich bin auf der Suche einer Formel zur Berechnung einer
> geometrisch wachsenden endlichen Rente aus einem gegebenen
> Wert. Eine Art Annuitätenfaktor, nur mit dem Unterschied,
> dass sich die "Annuität" in jeder Periode um x% erhöht.
> Kann mir hierbei jemand behilflich sein?
>  
> Gegeben sind folgende Werte:
>  
> - zu verrentendes Kapital "KW"
>  - Dauer der Rente "n"
>  - Satz der Kapitalverzinsung "p"
>  - Steigerungsrate der Rente pro Periode "x"


Ich bin bei nachfolgender Berechnung davon ausgegangen, daß die Rente jährlich und nachschüssig
ausgezahlt wird.
Die Rente bezeichne ich nachfolgend mit A
Der Satz der Kapitalverzinsung ist bei mir durch p:= [mm] (1+\frac{z}{100}) [/mm] definiert, wobei z den prozentualen Jahreszinsatz bezeichnet.
Der Faktor, um den die jährliche Rente ("Annuität") steigen soll definiere ich als y, Du hast mit x den Prozentsatz bezeichnet,um den die Rente jährlich steigen soll, es gilt dann natürlich y:= [mm] (1+\frac{x}{100}). [/mm]
Weiterhin soll das zu verentende Kapital [mm] K_{W} [/mm] am Ende der Laufzeit, also nach n Jahren, vollständig durch die ausgezahlten Jahresrenten aufgebraucht sein.(Also der "Annuitätenfall")

Für die Berechnung sind zwei Fälle zu unterscheiden :

1.) Falls  y [mm] \not= [/mm] p gilt folgende Gleichung:

[mm] K_{W}\cdot p^n-A\cdot\frac{p\cdot(y^n-p^n)}{y-p}=0 [/mm]


2) Falls  y = p gilt, diese:

[mm] K_{W}\cdot p^n-n \cdot A\cdot p^n=0 [/mm]


Sind o. aufgeführte Werte bekannt, kann die Jahresrente problemlos bestimmt werden.

Viele Grüße
von
Heiko



Bezug
                
Bezug
Faktor f. geometr.wachs. Rente: Geometrisch wachende Rente
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Fr 09.03.2007
Autor: heyks

Hallo Carsten ,

es hat sich der Fehlerteufel eingeschlichen!

Statt :


> [mm]K_{W}\cdot p^n-A\cdot\frac{p\cdot(y^n-p^n)}{y-p}=0[/mm]


muß es heißen :


[mm]K_{W}\cdot p^n-A\cdot\frac{(y^n-p^n)}{y-p}=0[/mm]


und statt :

> 2) Falls  y = p gilt, diese:
>  

> [mm]K_{W}\cdot p^n-n \cdot A\cdot p^n=0[/mm]

ist :

[mm]K_{W}\cdot p^n-n \cdot A\cdot p^{n-1}=0[/mm]


richtig.

  
Viele Grüße
von
Heiko  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]