matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFächer-Teilchenmodell
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Fächer-Teilchenmodell
Fächer-Teilchenmodell < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fächer-Teilchenmodell: Hilfe bei Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:33 Di 04.04.2017
Autor: Stala

Aufgabe
Gegeben seien n Teilchen, von denen sich jedes mit der Wahrscheinlichkeit 1/N in einem der N Kästchen (N> n) befinden kann. Gesucht werden die Wahrscheinlichkeiten, dass sich

A) in n ausgewählten Kästchen je 1 Teilchen befindet
B) in n beliebigen Kästchen je 1 Tielchen befindet

Nehmen Sie (wie in der Bose–Einstein-Statistik) die Fälle, die durch Vertauschen
der Teilchen ineinander übergehen, als identisch an (wichtig ist nur, wie viele Teilchen in ein Kästchen fallen, jedoch nicht, welche Teilchen es sind

Hallo liebes Forum,

bei der Modellierung dieser Aufgabe habe ich eine grundsätzliches Problem. Im Prinzip würde ich das ja als Laplace-Experiment angehen wollen: günstige Fälle / mögliche Fälle.

Bei diesem Modell handelt es sich, wie sogar die Aufgabenstellung sagt um ununterscheibdare Teilchen wobei Merhfachbesetzungen der Fächer zugelassen sind. Die möglichen Fälle wären also: $$ [mm] \vektor{N + n -1\\ n} [/mm] $$
Nur weiß ich nicht, wie ich auf die günstigen kommen soll?

Ich hatte mir die Lösung anders überlegt:
A) Ich lasse das erste Teilchen in ein Kästchen fallen, die Wahrscheinlichkeit, dass es eines der n Kästchen trifft ist dann $$ [mm] \frac{n}{N} [/mm] $$, beim zweiten Teilchen dann $$ [mm] \frac{n-1}{N} [/mm] $$ da das erste günstige Fach belegt ist usw., sodass ich auf die Wahrscheinlichkeit komme:
$$ P(A) = [mm] \frac{n!}{N^n} [/mm] $$
B) Hier hat das erste Teilchen alle Möglichkeiten in ein Fach zu fallen, das nächste Teilchen muss nur ein naderes Fach erwischen, also Wahrscheinlichkeit [mm] \$$ [/mm] frac{N-1}{N} $$ usw, sodass ich erhalte:
$$ P(B) = [mm] \frac{(N)_n}{N^n} [/mm] $$

nur haben diese LÖsung rein gar nichts mit dem zu Grunde liegenden Modell zu tun?

Kann mir jemand helfen?

VG

        
Bezug
Fächer-Teilchenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Di 04.04.2017
Autor: HJKweseleit

Deine Überlegungen sind richtig. Das letzte Ergebnis muss heißen:

[mm] p=\bruch{N!}{N^n*n!}, [/mm] aber auch bei mir versagt der Formeleditor.

Bezug
                
Bezug
Fächer-Teilchenmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Di 04.04.2017
Autor: Stala

Dankeschön! Dann hat micht der Hinweis aus der Aufgabenstellung nur verwirrt statt dass er hilft :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]