Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft
Für
Schüler
,
Studenten
, Lehrer, Mathematik-Interessierte.
Hallo Gast!
[
einloggen
|
registrieren
]
Startseite
·
Forum
·
Wissen
·
Kurse
·
Mitglieder
·
Team
·
Impressum
Forenbaum
Forenbaum
Schulmathe
Primarstufe
Mathe Klassen 5-7
Mathe Klassen 8-10
Oberstufenmathe
Schul-Analysis
Lin. Algebra/Vektor
Stochastik
Abivorbereitung
Mathe-Wettbewerbe
Bundeswettb. Mathe
Deutsche MO
Internationale MO
MO andere Länder
Känguru
Sonstiges
Gezeigt werden alle Foren bis zur Tiefe
2
Navigation
Startseite
...
Neuerdings
beta
neu
Forum
...
vor
wissen
...
vor
kurse
...
Werkzeuge
...
Nachhilfevermittlung
beta
...
Online-Spiele
beta
Suchen
Verein
...
Impressum
Das Projekt
Server
und Internetanbindung werden durch
Spenden
finanziert.
Organisiert wird das Projekt von unserem
Koordinatorenteam
.
Hunderte Mitglieder
helfen ehrenamtlich in unseren
moderierten
Foren
.
Anbieter der Seite ist der gemeinnützige Verein "
Vorhilfe.de e.V.
".
Partnerseiten
Weitere Fächer:
Vorhilfe.de
FunkyPlot
: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseite
>
MatheForen
>
Reelle Analysis mehrerer Veränderlichen
>
Extremwerte
Foren für weitere Schulfächer findest Du auf
www.vorhilfe.de
z.B.
Geschichte
•
Erdkunde
•
Sozialwissenschaften
•
Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte
Extremwerte
<
mehrere Veränderl.
<
reell
<
Analysis
<
Hochschule
<
Mathe
<
Vorhilfe
Ansicht:
[ geschachtelt ]
|
Forum "Reelle Analysis mehrerer Veränderlichen"
|
Alle Foren
|
Forenbaum
|
Materialien
Extremwerte: Tipp
Status
:
(Frage) beantwortet
Datum
:
09:53
Di
06.10.2009
Autor
:
patsch
[Dateianhang nicht öffentlich]
Die Extrempunkte habe ich ermittelt. Wie kann ich untersuchen ob es sich um relative oder absolute Extrempunkte handelt.
mfg patsch
Dateianhänge
:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Extremwerte: Antwort
Status
:
(Antwort) fertig
Datum
:
10:12
Di
06.10.2009
Autor
:
fred97
Zu (a) :
Es ist $g(x):= f(x, [mm] -\bruch{x}{2}) [/mm] = -5x+5$
g ist also weder nach oben noch nach unten beschränkt. Damit hat f weder ein absolutes Max. noch ein abs. Min.
Zu (b). verfahre wie bei (a): betrachte $f(x,-x)$
FRED
Bezug
Ansicht:
[ geschachtelt ]
|
Forum "Reelle Analysis mehrerer Veränderlichen"
|
Alle Foren
|
Forenbaum
|
Materialien
www.schulmatheforum.de
[
Startseite
|
Forum
|
Wissen
|
Kurse
|
Mitglieder
|
Team
|
Impressum
]