matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenExtremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Extremwerte
Extremwerte < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Fr 20.06.2008
Autor: jaruleking

Aufgabe
Zeigen Sie, dass die Funktion

f: [mm] \IR^2 \to \IR^2, f(x,y)=(1+e^y)cos(x)-y*e^y [/mm] unendlich viele lokale Maxima, aber kein lokales Minimum hat.

Lösung:

f ist in [mm] \IR^2 [/mm] beliebig oft diff.bar und es gilt:

[mm] \bruch{\partial f}{\partial x}(x,y)=-(1+e^y)sin(x) [/mm]

[mm] \bruch{\partial f}{\partial y}(x,y)=e^ycos(x)-(y+1)e^y [/mm]

[mm] \bruch{\partial^2 f}{\partial x^2}(x,y)=-(1+e^y)cos(x) [/mm]

[mm] \bruch{\partial^2 f}{\partial x \partial y}(x,y)=-e^ysin(x) [/mm]

[mm] \bruch{\partial^2 f}{\partial y^2}(x,y)=e^ycos(x) -(y+2)e^y [/mm]

Notwendig für das Vorliegen eines lokalen Extremums (x,y) ist Df(x,y)=0, d.h. (x,y) ist eine Lösung des Gleichungssystems

[mm] -(1+e^y)sin(x)=0 [/mm]
[mm] e^ycos(x)-(y+1)e^y=0 [/mm]

Es folgt, dass sin(x)=0, also [mm] x=k\pi [/mm] mit k [mm] \in \IZ. [/mm] Dieses x dann in die zweite Gleichung eingesetzt liefert [mm] y=cos(k\pi)-1=(-1)^k-1 [/mm]


So bis hier hin habe ich auch alles noch verstanden. Jetzt folgt aber:

Wir untersuchen die Hessematrix von f an den Stellen [mm] (2k\pi,0) [/mm] und [mm] ((2k+1)\pi,-2) [/mm] mit k [mm] \in \IZ [/mm] auf Definitheit, um lokale Extrema festzustellen.

So genau hier habe ich jetzt Verständnisprobleme:

Wir haben doch als Nullstellen der ersten partiellen Ableitung folgendes erhalten:


[mm] (k\pi,(-1)^k-1) [/mm] aber wieso untersuchen die Jetzt an den Stellen [mm] (2k\pi,0) [/mm] und [mm] ((2k+1)\pi,-2) [/mm] ? Das versteh ich noch nicht, wo kommen diese Stellen her?

Danke für hilfe.

Gruß

        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Fr 20.06.2008
Autor: djmatey

Hallo,

das ist eine Fallunterscheidung:
Falls k gerade, gilt doch y = 0,
falls k ungerade, gilt y = -2.
Diese beiden Fälle werden nun einzeln betrachtet.
[mm] 2k\pi [/mm] bedeutet hier, dass die geraden k betrachtet werden, daher ist dann auch y = 0, d.h. die Stelle [mm] (2k\pi,0) [/mm]
[mm] (2k+1)\pi [/mm] bedeutet, dass die ungeraden k betrachtet werden, daher ist dann auch y = -2 und die zu untersuchende Stelle [mm] ((2k+1)\pi, [/mm] -2).

LG djmatey

Bezug
                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Fr 20.06.2008
Autor: jaruleking

Das macht Sinn. Vielen Dank

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]