matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExtremwertbeispiel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Extremwertbeispiel
Extremwertbeispiel < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertbeispiel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Sa 22.10.2005
Autor: stevarino

Hallo

Ich hab folgendes Problem :
Man bestimmediejenigen Dreiecke, für welche das Produkt der Sinuswerte der Winkel maximal ist

für welche
f(x,y)=sinx*siny*sin(x+y) in 0 [mm] \lex\le \pi, [/mm] 0 [mm] \ley\le\pi, [/mm] 0 [mm] \le(x+y)\le\pi [/mm]
ein Maximum annimmt.

ich leite mal nach x und y partiell ab
fx=siny*sin(2x+y)
fy=sinx*sin(x+2y)

jetzt die Nullstellen bestimmen für fx
siny=0
[mm] y=k_{1}*\pi [/mm]

sin(2x+y)=0
[mm] x=k_{1}*\pi [/mm]

etzt die Nullstellen bestimmen für fy
sinx=0
[mm] x=k_{2}*\pi [/mm]

sin(2y+x)=0
[mm] y=k_{2}*\pi [/mm]

so und jetzt steh in der Lösung die ich habe
[mm] y=\bruch{\pi}{3}*(2k_{2}-k_{1}) [/mm]
[mm] x=bruch{\pi}{3}*(2k_{1}-k_{2}) [/mm] wie kommt man da drauf??????

Danke
Stevo

        
Bezug
Extremwertbeispiel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Sa 22.10.2005
Autor: angela.h.b.


>  Man bestimmediejenigen Dreiecke, für welche das Produkt
> der Sinuswerte der Winkel maximal ist
>  
> für welche
> f(x,y)=sinx*siny*sin(x+y) in 0 [mm]\le x \le \pi, [/mm] 0 [mm] \le y\le \pi,[/mm] 0
> [mm] \le(x+y)\le \pi[/mm]
>  ein Maximum annimmt.

Hallo,

bevor wir irgendetwas rechnen, guck Dir mal Dein Ergebnis an:

[mm]y=k_{1}*\pi[/mm] und
[mm]x=k_{2}*\pi[/mm]   mit [mm] k_1, k_2 \in \IZ [/mm] (das steht da zwar nicht ausdrücklich, meinst Du aber sicher)

Und??? Hast Du's schon gemerkt? Solch ein Dreieck gibt's doch gar nicht! Schon von daher kann das keine Lösung der Aufgabe sein.

Weil es um Dreiecke geht, können wir schonmal feststellen 0<x,y< [mm] \pi [/mm]

>  
> ich leite mal nach x und y partiell ab
>  fx=siny*sin(2x+y)
>  fy=sinx*sin(x+2y)

Richtig.

>  
> jetzt die Nullstellen bestimmen für fx

Ja.

Es ist
[mm] f_x=siny*sin(2x+y), [/mm] also

0=siny*sin(2x+y).

Wegen 0< y< [mm] \pi [/mm] ist siny [mm] \not=0, [/mm] also folgt

0=sin(2x+y)  ==> [mm] 2x+y=k_1* \pi, k_1\in \IZ [/mm]

Wenn Du das verstanden hast, wirst Du allein weiterkommen.
Du erhältst aus [mm] f_y [/mm] eine weitere Gleichung in Abhängigkeit von x und y. Dieses GS mußt Du dann lösen.  Und noch gucken, ob's wirklich ein Maximum ist.
Viel Erfolg!
Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]