matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgaben + Nebenbed.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Extremwertaufgaben + Nebenbed.
Extremwertaufgaben + Nebenbed. < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgaben + Nebenbed.: Frage/Aufgaben
Status: (Frage) beantwortet Status 
Datum: 21:03 Fr 18.02.2005
Autor: kiwi18

Hallo Leute,
es wäre ganz lieb von euch, wenn ihr mir bei diesen Aufgaben helfen könnet. Ich bin total am verzweifeln.

1) Ein Kegel mit der Seitenkante 24 cm soll ein möglichst großes Volumen haben.
Zielfunktion (ZF) V(r,h) =1/3* [mm] \pi*r²*h [/mm]
Nebenbedingung (NB): a²=h²+r
a=24 eingesetzt: 24²=h²+r²
576=h²+r²
r²=576-h²
eingesetzt in ZB: V(h)=1/3* [mm] \pi*(576-h²)*h [/mm]
V(h)= 576h [mm] \pi- [/mm] h³ [mm] \pi [/mm]
V‘(h)=576 [mm] \pi-3 \pih² [/mm]
V‘(h)=0
usw. geht die Aufgabe so??? (ja, dann gut!!)

2) Einer Halbkugel mit dem Radius 20 cm soll ein Zylinder mit maximalen Volumen einbeschrieben werden.
ZF: V(r,h)= [mm] \pi*r²*h [/mm]
NB: ???

3) Einem Halbkreis mit dem Radius 30 cm soll ein gleichschenkliges Dreieck einbeschrieben werden, dessen Spitze mit dem Halbierungspunkt des Durchmessers zusammenfällt. Welche Maße muss das Dreieck haben, damit seine Fläche maximal groß ist?
ZF: A(g,h)=g*h/2
NB: ???

Danke
kiwi


        
Bezug
Extremwertaufgaben + Nebenbed.: Tipp
Status: (Antwort) fertig Status 
Datum: 21:38 Fr 18.02.2005
Autor: Max


> Hallo Leute,

Guten Abend

>  es wäre ganz lieb von euch, wenn ihr mir bei diesen
> Aufgaben helfen könnet. Ich bin total am verzweifeln.
>  
> 1) Ein Kegel mit der Seitenkante 24 cm soll ein möglichst
> großes Volumen haben.
> Zielfunktion (ZF) V(r,h) =1/3* [mm]\pi*r²*h [/mm]
>  Nebenbedingung (NB): a²=h²+r²
>  a=24 eingesetzt: 24²=h²+r²
>  576=h²+r²
>  r²=576-h²
>  eingesetzt in ZB: V(h)=1/3* [mm]\pi*(576-h²)*h [/mm]
>  V(h)= 576h [mm]\pi-[/mm] h³ [mm]\pi [/mm]
>  V‘(h)=576 [mm]\pi-3 \pi h² [/mm] (meinest du sicherlich)
>  V‘(h)=0
> usw. geht die Aufgabe so??? (ja, dann gut!!)

[ok] ich sehe keinen Fehler in deinem Ansatz.

>  
> 2) Einer Halbkugel mit dem Radius 20 cm soll ein Zylinder
> mit maximalen Volumen einbeschrieben werden.
>  ZF: V(r,h)= [mm]\pi*r²*h [/mm]
>  NB: ???

Schon mal versucht einen Schnitt längs des Durchmesser der Halbkugel und des einbeschriebenen Zylinder zu untersuchen, da gibt es sicherlich wiederum eine Beziehung zwischen dem Radius $r$ des Zylinders, der Höhe $h$ des Zylinders und dem Radius der Halbkugel [mm] $30\,\text{cm}$. [/mm]


  

> 3) Einem Halbkreis mit dem Radius 30 cm soll ein
> gleichschenkliges Dreieck einbeschrieben werden, dessen
> Spitze mit dem Halbierungspunkt des Durchmessers
> zusammenfällt. Welche Maße muss das Dreieck haben, damit
> seine Fläche maximal groß ist?
>  ZF: A(g,h)=g*h/2
>  NB: ???

Da man genauso gut ein einbeschriebenes Rechteck maximieren könnte (der Flächeninhalt ist ja nur immer doppelt so groß), gelten die gleichen Beziehungen zwischen $g$, $h$ und dem Radius des Kreises wie in 2 bei der Kugel....


>  
> Danke
> kiwi

Ich hoffe der Tipp reicht, sonst frag nochmal...

Brackhaus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]